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Experiments 

 

TRASFORMERS 

 
QUERY, KEY,VALUE, SOFTMAX 

ENCODER-ONLY 
- MASKED LANGUAGE MODELING MLM 

 
Encoder-only models are best suited text classification. They are not particularly useful 
for generative tasks that continue to generate more text. A well-known encoder-only 
model is BERT. USATI ANCHE PER RAG (SIMILARITY SEARCH) 

 
1. Sentiment Analysis: Analyzing text to determine the sentiment expressed (positive, 

negative, neutral). 
• Model Example: BERT 
• AWS Service: Amazon Comprehend 

2. Text Classification: Categorizing text into predefined categories, such as tagging 
customer feedback into topics. 
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• Model Example: DistilBERT 
• AWS Service: Amazon Comprehend 

3. Named Entity Recognition (NER): Identifying and classifying key information 
(names, places, dates) in text. 

• Model Example: BERT 
• AWS Service: Amazon Comprehend 

4. Document Summarization: Summarizing long documents into concise summaries. 
• Model Example: Longformer 
• AWS Service: There's no direct AWS service for this specific task as of my 

last update, but you can deploy custom models on Amazon SageMaker. 
5. Question Answering: Extracting answers from a text given a question. 

• Model Example: BERT 
• AWS Service: Amazon Kendra for question-answering capabilities, although 

Kendra is more of a search service, it can be complemented with custom 
BERT models deployed on Amazon SageMaker for specific QA tasks. 

6. Language Modeling: Predicting the next word or character in a sequence. 
• Model Example: GPT (Note: GPT is an encoder-decoder model but can be 

used in an encoder-only mode for specific tasks). 
• AWS Service: Custom models can be deployed on Amazon SageMaker. 

7. Feature Extraction: Generating dense vector representations of text for use in 
various machine learning models. 

• Model Example: RoBERTa 
• AWS Service: Amazon SageMaker to deploy custom models for extracting 

features. 
8. Text Similarity and Clustering: Determining how similar two pieces of text are and 

clustering similar texts together. 
• Model Example: Sentence Transformers 
• AWS Service: Amazon SageMaker for deploying custom models. 

9. Fake News Detection: Identifying and flagging fake news articles. 
• Model Example: BERT 
• AWS Service: Amazon Comprehend for sentiment and entity recognition as 

part of a larger fake news detection pipeline, with custom logic on Amazon 
SageMaker. 

10. SEO Keyword Extraction: Extracting relevant keywords from content for SEO 
optimization. 

• Model Example: BERT 
• AWS Service: Amazon Comprehend to extract key phrases which can then be 

refined for SEO purposes. 
 

DECODER-ONLY AUTOREGRESSIVI (FLACON, GPT3, LLAMA2) 
TRAINED USING CAUSAL LANGUAGE MODELING CLM, PREDICT NEXT TOKEN. 
Aka Autoregressive language modeling: predicting the next word in a sequence given the previous words. The "causal" aspect refers to the 
fact that the model generates text based on the causal (or sequential) order of the words, where each word prediction is dependent only on 
the preceding words, not on any future words. This approach is foundational for many language generation models, including autoregressive 
transformers like GPT (Generative Pre-trained Transformer). generate sequences of data by predicting one element at a time, 
using the history of previously generated elements as context.  
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Tasks: generation or prediction where the output is sequential in nature.  

 
1. Text Generation: Generating coherent and contextually relevant text based on a prompt. 

• Model Example: GPT-3 (Generative Pre-trained Transformer 3) 
• AWS Service: Amazon SageMaker for deploying custom GPT-3 models. 

2. Machine Translation: Translating text from one language to another. 
• Model Example: Transformer Base or Transformer Big models (original Transformer 

model variants) 
• AWS Service: Amazon Translate for ready-to-use translation, or Amazon SageMaker 

for custom transformer models. 
3. Language Modeling: Predicting the next word in a sentence given the previous words. 

• Model Example: GPT-2 
• AWS Service: Amazon SageMaker 

4. Code Generation: Generating programming code based on a description of functionality. 
• Model Example: Codex (a GPT-3 variant fine-tuned for understanding and generating 

code) 
• AWS Service: Amazon SageMaker for deploying custom Codex models. 

5. Conversational AI and Chatbots: Creating chatbots that can engage in human-like 
conversation. 

• Model Example: GPT-3 
• AWS Service: Amazon Lex for chatbots + sagemaker  

6. Music Composition: Generating new pieces of music in a sequential manner, note by note 
or beat by beat. 

• Model Example: Transformer-based models tailored for music generation 
• AWS Service: Amazon SageMaker for deploying custom models. 

7. Predictive Text Completion: Completing a user's sentence in real-time as they type, to 
speed up writing. 

• Model Example: GPT-3 
8. Speech Recognition: Transcribing spoken language into text by predicting sequences of 

words. 
• Model Example: Wav2Vec 2.0 (While primarily a feature extractor, it can be used in 

an autoregressive setup for speech recognition) 
• AWS Service: Amazon Transcribe for direct speech recognition service, or Amazon 

SageMaker for custom models. 
9. Image Captioning: Generating descriptive captions for images by sequentially predicting 

words. 
• Model Example: Transformer models that combine CNN features with 

autoregressive decoding. 
10. Handwriting Generation: Producing text that mimics handwriting by generating sequences 

of strokes or characters. 
• Model Example: Transformer-based models designed for sequence-to-sequence 

tasks 
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ENCODE-DECODER SEQ2SEQ 
Encoder-decoder architectures in transformers are designed for tasks that involve 
transforming an input sequence into an output sequence, where the two sequences can be of 
different lengths and structures. This architecture is particularly useful for tasks that require 
an understanding of the entire input before generating the output. 
Designed for translation, are also very useful for text-summarization.  
 

1. Machine Translation: Translating a text from one language to another while 
maintaining the context and nuances of the original language. 

• Model Example: Transformer (original model by Vaswani et al.) 
• AWS Service: Amazon Translate for direct translation services +SageMaker 

2. Text Summarization: Creating a concise summary of a longer text that captures the 
main points. 

• Model Example: BART (Bidirectional and Auto-Regressive Transformers) 
3. Question Answering: Providing answers to questions based on a given context 

paragraph or document. 
• Model Example: T5 (Text-to-Text Transfer Transformer) 
• AWS Service: Amazon SageMaker for deploying custom T5 models for 

sophisticated question-answering systems. 
4. Text-to-Speech (TTS): Converting written text into spoken words, generating 

human-like speech. 
• Model Example: Tacotron 2 (Although not a transformer, it's an encoder-

decoder model used for TTS) 
• AWS Service: Amazon Polly for text-to-speech services, or Amazon 

SageMaker for deploying custom models. 
5. Speech-to-Text: Transcribing spoken words into written text, accurately capturing the 

spoken content. 
• Model Example: DeepSpeech (While not a transformer, it's an example of an 

encoder-decoder model used for STT) 
• AWS Service: Amazon Transcribe for speech recognition, or Amazon 

SageMaker for deploying custom models. 
6. Image Captioning: Generating descriptive text for an image. 

• Model Example: Show and Tell (a neural image caption generator) 
• AWS Service: Amazon SageMaker for deploying custom models that combine 

CNNs for image processing and transformers for text generation. 
7. Name Entity Recognition (NER): Identifying and classifying named entities in text 

into predefined categories such as the names of persons, organizations, locations. 
• Model Example: BERT (Bidirectional Encoder Representations from Transformers) for encoding, with a 

decoding layer for classification: trained with MLM and next sentence 
prediction (NSP).  

• AWS Service: Amazon Comprehend for ready-to-use NER, SageMaker  
8. Document Translation: Translating entire documents while preserving formatting 

and structure. 
• Model Example: Transformer models specifically fine-tuned for document-

level translation 
• AWS Service: Amazon Translate for straightforward document translation, or 

Amazon SageMaker for deploying and fine-tuning custom models. 
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9. Dialogue Systems: Building systems capable of conducting a conversation with 
human users, understanding their input, and generating appropriate responses. 

• Model Example: T5 or DialoGPT (a variant of GPT-2 optimized for dialogue) 
• AWS Service: Amazon Lex for creating conversational interfaces, integrated 

with custom models on Amazon SageMaker for more complex dialogue 
handling. 

10. Code Generation: Automatically generating programming code from a natural 
language description. 

• Model Example: Codex (built on GPT-3) 
• AWS Service: Amazon SageMaker for deploying custom Codex models or 

other code generation models. 
 
 
 

SCALING-LAWS: CHINCILLA PAPER 
optimal training dataset size (in tokens) is 20x the number of model parameters and that 
anything below that 20x ratio is potentially overparameterized and undertrained. 

Unveiling	Transformer	Learning	for	Trustworthy	AI		
		
Generative	transformer	models	have	become	increasingly	complex,	with	large	numbers	
of	parameters	and	the	ability	to	process	multiple	input	modalities.	Current	methods	for	
explaining	their	predictions	are	resource-intensive.	Most	crucially,	they	require	
prohibitively	large	amounts	of	extra	memory,	since	they	rely	on	backpropagation	that	
allocates	almost	twice	as	much	GPU	memory	as	the	forward	pass.	This	makes	it	difficult,	
if	not	impossible,	to	use	them	in	production.	We	present	AtMan	(NeurIPS	2023),	which	
provides	explanations	of	generative	transformer	models	(language	and	multimodal)	at	
almost	no	extra	cost.	Specifically,	AtMan	is	a	modality-agnostic	perturbation	method	
that	manipulates	the	attention	mechanisms	of	transformers	to	produce	relevance	maps	
for	the	input	with	respect	to	the	output	prediction.	Instead	of	using	backpropagation,	
AtMan	applies	a	parallelizable	token-based	search	method	based	on	cosine	similarity	
neighborhood	in	the	embedding	space.	Our	exhaustive	experiments	on	text	and	image-
text	benchmarks	demonstrate	that	AtMan	outperforms	current	state-of-the-art	
gradient-based	methods	on	several	metrics	while	being	computationally	efficient.	As	
such,	AtMan	is	suitable	for	use	in	large	model	inference	deployments,	making	
generative	AI	auditable	and	trustworthy	and	enabling	a	human	expert	to	take	
responsibility,	even	in	environments	where	there	is	no	clear,	easy	answer.	
 

4 MEMORY OPTIMIZATIONS IN FULL OR FINE-TUNING 
TRAININGS  
E’ O(N^2): optimizing the self-Attention Layers CON  

1) QUANTIZATION, OR  
2) FLASHATTENTION (SELF ATTENTION TRAINING DIVENTA O(N)) SU GPU 
3) GROUPED QUERY ATTENTION: By grouping queries together before computing 

attention scores, this method reduces the computational complexity and memory 
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usage. It operates by aggregating similar or related queries into groups and then 
performing the attention operations on these groups instead of individual queries. This 
approach allows the model to focus computational resources on processing groups of 
queries that share common features or targets, enhancing the model's scalability and 
performance, especially in tasks involving large input sequences or datasets.  

4) DISTRIBUTED COMPUTING 
a. DISTRIBUTED DATA PARALLEL 

 
b. FULLY SHARDED DATA PARALLEL (2019 ZERO PAPER): sharding the 

model with gradients, activations, and optimizer states—across the GPUs to 
achieve zero redundancy in the system.  

 
 
Train model on AWS Trainium hardware with AWS Neuron SDK OR Hugging Face 
Optimum Neuron library which integrates the Hugging Face Transformers ecosystem with 
the Neuron SDK. 
 

FULL FINE-TUNING 

 
 

Instruction Fine-Tuning and Evaluation 
- 500-1000 examples should be enough. If you provide instructions for just a single 

task (e.g., summarization) during fine-tuning, the model may experience 
“catastrophic forgetting” in which the model becomes so good at a single task 
that it may lose its ability to handle, or generalize to, other tasks. 
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- PROMPT TEMPLATES LIKE dialogue-summary. FLAN T5.TEMPLATE 
- Amazon SageMaker JumpStart: scale your fine-tuning workload to a large, 

distributed cluster of GPU instances simply by changing a single parameter, 
instance_count 

 

Mixture-of-Experts (MoE) 
Mixture-of-Experts (MoE) layers enhance a language model's capacity without 
significantly increasing computational demands. By substituting standard layers 
with MoE layers, which consist of multiple specialized layers (experts) with unique 
parameters, the model gains flexibility and depth. A gating mechanism selectively 
activates these experts for specific inputs, enabling efficient, sparse computation. 
Originating from early research on conditional computation, MoE layers have 
evolved to facilitate the training of large-scale models by offering a scalable way 
to boost model complexity and performance, particularly beneficial in areas like 
language modeling where larger model capacity often translates to improved 
outcomes. 

“As the training of giant dense models hits the boundary on the availability and 
capability of the hardware resources today, Mixture-of-Experts (MoE) models have 
become one of the most promising model architectures due to their significant 
training cost reduction compared to quality equivalent dense models.” - Mixture-of-
Experts (MoE) layers are simple and allow us to increase the size or capacity of a 
language model without a corresponding increase in compute. We just replace 
certain layers of the model with multiple copies of the layer—called “experts”—that 
have their own parameters. Then, we can use a gating mechanism to (sparsely) 
select the experts used to process each input. This idea has its roots in research on 
conditional computation in the early 1990s [15, 30] and allows us to train massive 
models in a tractable manner, which is helpful in domains—such as language 
modeling—that benefit from models with extra capacity. Here, we will study the MoE, 
its origins, and how it has evolved over the last two decades.  

Model forgetting 
https://www.buonaiuto.work/enhancing-multilingual-models-with-active-forgetting/ 
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EVALUATION OF MODELS 
- ROUGE (N-GRAM) FOR SUMMARIZATION TASKS,  
- BLUE FOR TRANSLATIONS 
- GLUE, SUPERGLUE 
- HELM 
- BIG-BENCH 

4 PEFT PARAMETER-EFFICIENT FINE TUNING: lora, 
qlora, soft prompt, RLHF 

  
- LORA ("Low-Rank Adaptation”):the number of 

parameters to be trained by freezing all of the original 
model parameters and inserting a pair of rank 
decomposition matrices alongside the original weights of 
a targeted set of modules (e.g., layers) in the model—
typically the linear layers, including self-attention. keep 
the original weights of the model frozen and train these 
smaller matrices using the same supervised learning 
process. The size of the low-rank matrices is set by the 
parameter called rank (r).  
 

- PROMPT TUNING AND SOFT PROMPTS 
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- RLHF FOR Helpful-Honest-Harmless 

 
o Amazon SageMaker Ground Truth for Human Annotations 
o PPO Proximal Policy Optimization RL Algorithm to update model with 

new weights 

 
o Parameter-Efficient Fine-Tuning LORA with RLHF 

 
 

3 Model Deployment Optimizations: prun,quantiz, distil 
The size of generative AI models often presents a challenge for deployment in terms of 
compute, storage, and memory requirements, as well as how to ensure low-latency 
completions. One of the primary ways to optimize for deployment is to take advantage of 
techniques that aim to reduce the size of the model, typically referred to as model 
compression. 

1) PRUNING (SPARSEGPT) 
2) QUANTIZATION Post-Training Quantization with GPTQ Hugging Face Optimum 

library 
3) DISTILLATION reduces computation and improve perf TEACHER-STUDENT.  

The teacher model’s output is used to “distill” knowledge to the student model.  
The teacher models’ predicted tokens are known as soft labels, while the student 
models’ predicted tokens are called soft predictions. In parallel, you need to compare 
the student models’ predictions (hard predictions) against the ground truth hard labels 
from the prompt dataset. The difference is the student loss. The distillation loss and 
student loss are combined and used to update the student models’ weights using 
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standard backpropagation.  

 
a. Hugging Face Optimum library for distillation 

 

Large Model Inference Container: INFERENTIA, NEURON 

 
- AWS Inferentia: Purpose-Built Hardware for Inference; family of accelerators, , is 

purpose-built for deep learning inference workloads. The AWS Neuron SDK 
interacts with AWS Inferentia. 

- AWS Neuron is a software development kit (SDK) enabling high-
performance deep learning acceleration using AWS Inferentia and 
Trainium 

2 Model Update and Deployment Strategies (AB testing,shadow deployment) 
- A/B Testing 
- Shadow deployment 
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- Amazon CloudWatch 

 
 

Context-Aware Reasoning Applications Using RAG and 
Agents: LANGCHAIN, REACT, PAL 
RAG= retrieval-augmented generation 
 

 
Agents orchestrate prompt-completion workflows between user requests, foundation models, 
and external data sources and applications while using the foundational model as brain using 
ReACT chain of thoughts (COT). 

Vector embeddings - from langchain.vectorstores import 
LangChain integrates with many vector stores, such as ElasticSearch, OpenSearch, 
Pinecone, and Facebook AI Similarity Search (FAISS) 
Feature/Aspect ElasticSearch OpenSearch Pinecone FAISS (Facebook AI Similarity 

Search) 

Architecture Distributed search engine 
based on Lucene 

Fork of Elasticsearch, 
also based on Lucene 

Managed vector database 
designed for similarity 
search 

Library for efficient similarity 
search of dense vectors 

Primary Use 
Cases 

Full-text search, structured 
search, analytics 

Full-text search, 
structured search, 
analytics 

Similarity search in high-
dimensional spaces 

Efficient similarity search and 
clustering of dense vectors 

Scalability Highly scalable, distributed 
nature 

Highly scalable, 
distributed nature 

Built for scalability and 
performance at scale 

Highly efficient on large datasets, 
but scalability depends on the 
hardware and integration 
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Feature/Aspect ElasticSearch OpenSearch Pinecone FAISS (Facebook AI Similarity 
Search) 

Managed Service Available via Elastic Cloud 
and other cloud providers 

Available via AWS 
and other cloud 
providers 

Fully managed service Not a managed service; requires 
self-hosting and integration 

Vector Search 
Support 

Supports vector search 
through dense vector fields 
and plugins like 
Elasticsearch Learning to 
Rank 

Similar support as 
Elasticsearch, 
including plugins 

Native and primary focus 
on efficient vector search 

Specialized in vector similarity 
search, requires integration with 
other systems for full search 
capabilities 

Machine Learning 
Integration 

Integrates with Elastic ML 
for anomaly detection and 
forecasting 

Integrates with Elastic 
ML for anomaly 
detection and 
forecasting 

Focuses on vector search, 
but can be used alongside 
ML models for enriched 
applications 

Primarily for ML applications, 
especially those requiring 
similarity search, such as 
recommendation systems 

Open Source Yes, with commercial 
features available 

Fully open source Proprietary, with a free tier 
available 

Open source 

Optimized for General search and 
analytics 

General search and 
analytics 

Similarity search in vector 
spaces 

Dense vector similarity search 
and clustering 

Customizability High, through various 
plugins and configurations 

High, similar to 
Elasticsearch 

Configurable indices and 
schemas 

High, but focused on algorithmic 
customization for search and 
clustering 

Ease of Use User-friendly with 
extensive documentation 
and community support 

Similar to 
Elasticsearch 

Designed for simplicity in 
similarity searches 

Requires more specialized 
knowledge to implement and 
integrate 

 
Feature/Aspect ElasticSearch & OpenSearch Pinecone FAISS 
Performance: 
Read/Search 

High, with optimizations for 
distributed search 

Very high, optimized 
for vector similarity 
search 

Extremely high for similarity search; 
optimized for GPU/CPU 

Performance: 
Write/Index 

High, efficient indexing with 
support for bulk operations 

High, supports efficient 
batch indexing 

Variable, depends on setup; batch 
processing can be efficient but requires 
more manual management 

Ease of Use: 
Read/Search 

Relatively easy with DSL and 
REST APIs; extensive client 
libraries 

Very easy for vector 
searches; simplified 
API 

More complex; requires manual setup of 
search parameters and index loading 

Ease of Use: 
Write/Index 

Easy with REST APIs and 
client libraries; bulk indexing 
supported 

Easy with simplified 
API for batch indexing 

More complex; requires understanding of 
vector space partitioning and indexing 
techniques 

LOC for 100 
Reads 

Low to moderate; bulk search 
operations can reduce LOC 

Low; streamlined API 
for search queries 

Moderate to high; complexity depends on 
the integration level 

LOC for 100 
Writes 

Low to moderate; bulk 
indexing can significantly 
reduce LOC 

Low; simplified API 
for batch updates 

High; requires manual data preparation 
and batch processing setup 
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Creating vector embeddings that store 
numeric representations of text data in 
vector stores provides for efficient 
document search and retrieval techniques 
in RAG architectures. Documents are 
often large and contain varied degrees of 
related information on a variety of topics, 
some more related than others. you need to 
consider efficient strategies for optimizing 
the storage and retrieval of these 
documents as well as minimizing the risk 
of losing context. Because LLMs have fixed context window limitations, you also need to 
develop document storage and retrieval strategies that consider those limitations. “RAG will 
be used to augment the prompt with additional information prior to calling the LLM.” 
 

  
 
Chunking 

 
Reranking with “Maximum Marginal Relevance (MMR)” 

 

Prompt Augmentation 
          Augmented prompt 
          Completion prompt 
 

LangChain - AWS Bedrock 
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LangChain is a framework designed to facilitate the creation, combination, and 
experimentation with different components in language models, especially in the context of 
building applications that leverage large language models (LLMs) for various tasks. One of 
the concepts within LangChain is the use of "chains," which are sequences of components 
linked together to perform complex tasks. These components can include language models, 
databases, retrieval systems, and more. The framework allows for the creation of 
sophisticated workflows by chaining together different functionalities. 

Components of RAG: 
1. Retriever: This component is responsible for querying a large dataset or document 

collection to find content that is relevant to the input question or prompt. The retrieval 
is usually based on semantic similarity, meaning the retriever looks for documents 
that semantically relate to the question, even if they don't contain the exact words. 

2. Generator: The retrieved documents are then passed to a generative model, which 
synthesizes the information contained in them to generate a coherent and contextually 
relevant answer. This model can be based on architectures like Transformers, and it 
leverages the information from the retrieved documents to enhance its responses. 

 

Chains in LangChain 
Chains are essentially pipelines where the output of one component serves as the input for the 
next. This modular approach enables developers to build complex language processing 
applications by combining simpler, reusable components. For example, a chain might involve 
retrieving relevant documents, summarizing content, and then generating answers based on 
the summarized information. 
https://github.com/svpino/youtube-rag/blob/main/rag.ipynb  

RetrievalQA in LangChain 
RetrievalQA, or Retrieval-based Question Answering, is a specific use case within 
LangChain where a chain is designed to answer questions by retrieving relevant information 
from a database or collection of documents before attempting to generate an answer. This 
approach mimics how humans often answer questions: by first finding relevant sources of 
information and then synthesizing answers based on what they've found. 
How RetrievalQA Works in LangChain: 

1. Question Processing: The chain begins with a question or prompt from the user. This input is processed to understand the context and intent. 
2. Document Retrieval: The next step involves retrieving relevant documents or data that may contain the answer to the question. This is typically done using a 

retrieval system that can search through a large corpus of text based on keywords, semantic similarity, or other criteria relevant to the question. 
3. Document Processing: The retrieved documents might be processed further, such as by summarizing them or extracting key pieces of information. This step 

reduces the amount of data that the next component in the chain has to handle and focuses on the most relevant information. 
4. Answer Generation: Finally, based on the processed information from the retrieved documents, the chain generates an answer to the original question. This 

can involve a language model that synthesizes information from the documents into a coherent and concise answer. 
5. Feedback/Iteration: Optionally, the system can incorporate feedback mechanisms to refine the answers or improve the retrieval process, enhancing accuracy 

over time. 
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ReACT (prompt+Questions Thought Action Observation) 

 

Amazon Bedrock endpoints 
https://docs.aws.amazon.com/bedrock/latest/userguide/api-setup.html 

To connect programmatically to an AWS service, you use an endpoint. Refer to 
the Amazon Bedrock endpoints and quotas chapter in the AWS General Reference 
for information about the endpoints that you can use for Amazon Bedrock. 

Amazon Bedrock provides the following service endpoints. 

• bedrock – Contains control plane APIs for managing, training, and deploying 
models. For more information, see Amazon Bedrock Actions and Amazon 
Bedrock Data Types. 

• bedrock-runtime – Contains runtime plane APIs for making inference 
requests for models hosted in Amazon Bedrock. For more information, 
see Amazon Bedrock Runtime Actions and Amazon Bedrock Runtime Data 
Types. 

• bedrock-agent – Contains control plane APIs for creating and managing 
agents and knowledge bases. For more information, see Agents for Amazon 
Bedrock Actions and Agents for Amazon Bedrock Data Types. 

• bedrock-agent-runtime – Contains control plane APIs for managing, 
training, and deploying models. For more information, see Agents for Amazon 
Bedrock Runtime Actions and Agents for Amazon Bedrock Runtime Data 
Types. 

 
 
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html 
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Boto3 documentation 
You use the AWS SDK for Python (Boto3) to create, configure, and manage 
AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and 
Amazon Simple Storage Service (Amazon S3). The SDK provides an object-
oriented API as well as low-level access to AWS services. 

 
Supported foundation models in Amazon Bedrock 
 
Introducing The Foundation Model Transparency Index 
100 indicators for transparency pdf 
 
Less transparency makes it harder for other businesses to know if they can safely build 
applications that rely on commercial foundation models; for academics to rely on 
commercial foundation models for research; for policymakers to design meaningful 
policies to rein in this powerful technology; and for consumers to understand model 
limitations or seek redress for harms caused. 
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Open LLM Leaderboard  
 
📐 The 🤗 Open LLM Leaderboard aims to track, rank and evaluate open LLMs and 
chatbots. 

 
https://github.com/EleutherAI/lm-evaluation-harness 

•  Over 60 standard academic benchmarks for LLMs, with hundreds of 
subtasks and variants implemented. 

AutoGPTQ LLM Quantization 
An easy-to-use LLM quantization package with user-friendly APIs, based on GPTQ 
algorithm (weight-only quantization). 
 
State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 

 
🤗 Transformers provides thousands of pretrained models to perform tasks on 
different modalities such as text, vision, and audio. 

These models can be applied on: 
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• 📝 Text, for tasks like text classification, information extraction, question 
answering, summarization, translation, and text generation, in over 100 
languages. 

• 🖼 Images, for tasks like image classification, object detection, and 
segmentation. 

• 🗣 Audio, for tasks like speech recognition and audio classification. 

Transformer models can also perform tasks on several modalities combined, such 
as table question answering, optical character recognition, information extraction 
from scanned documents, video classification, and visual question answering. 

🤗 Transformers provides APIs to quickly download and use those pretrained models 
on a given text, fine-tune them on your own datasets and then share them with the 
community on our model hub. At the same time, each python module defining an 
architecture is fully standalone and can be modified to enable quick research 
experiments. 

🤗 Transformers is backed by the three most popular deep learning libraries 
— Jax, PyTorch and TensorFlow — with a seamless integration between them. It's 
straightforward to train your models with one before loading them for inference with 
the other. 

https://huggingface.co/models 

Current number of checkpoints: 531k 

 
 

>>> from transformers import pipeline 

 

# Allocate a pipeline for sentiment-analysis 

>>> classifier = pipeline('sentiment-analysis') 

>>> classifier('We are very happy to introduce pipeline to the transformers 
repository.') 

[{'label': 'POSITIVE', 'score': 0.9996980428695679}] 

--- 

https://www.pluralsight.com/resources/blog/data/get-started-amazon-bedrock 
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# To run this code, you first need to install the AWS SDK for Python called boto3 
# From the terminal, type "pip install boto3" 
import boto3 
import json 
 
# Create the client object for interacting with Amazon Bedrock 
# Be sure to select a region where Amazon Bedrock is available 
bedrock = boto3.client( 
    service_name='bedrock-runtime',  
    region_name='us-west-2' 
) 
 
# The input we'll send to the model 
# TIP: You can get this info in the playgrounds by clicking "View API request" and then 
updating the code below 
input = { 
  "modelId": "meta.llama2-13b-chat-v1", 
  "contentType": "application/json", 
  "accept": "*/*", 
  "body": "{\"prompt\":\"I need an idea for an app to build on Amazon 
Bedrock.\",\"max_gen_len\":512,\"temperature\":0.5,\"top_p\":0.9}" 
} 
 
# The response from the model 
response = bedrock.invoke_model(body=input["body"], 
                                modelId=input["modelId"], 
                                accept=input["accept"], 
                                contentType=input["contentType"]) 
 
response_body = json.loads(response['body'].read()) 
 
# Print the response from the model 
print(response_body) 
 
With fine-tuning, you take one of the base models (like Llama or Titan) with its general 
knowledge, then you augment it with your own data. 
In Amazon Bedrock, you can get to this functionality by clicking on Custom 
models on the left-hand navigation, then clicking Customize model→Create Fine-tune 
job.  Custom models can be very expensive, so I would not recommend going through with 
this unless you really know what you’re doing and have the budget to support it. 
https://docs.aws.amazon.com/bedrock/latest/userguide/what-is-bedrock.html 

Knowledge base for Amazon Bedrock 
Knowledge base for Amazon Bedrock provides you the capability of amassing data 
sources into a repository of information. With knowledge bases, you can easily build 
an application that takes advantage of retrieval augmented generation (RAG), a 
technique in which the retrieval of information from data sources augments the 
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generation of model responses. Once set up, you can take advantage of a 
knowledge base in the following ways. 

• Configure your RAG application to use the RetrieveAndGenerate API to query 
your knowledge base and generate responses from the information it 
retrieves. 

• Associate your knowledge base with an agent (for more information, 
see Agents for Amazon Bedrock) to add RAG capability to the agent by 
helping it reason through the steps it can take to help end users. 

• Create a custom orchestration flow in your application by using 
the Retrieve API to retrieve information directly from the knowledge base. 

Agents for Amazon Bedrock 
Agents for Amazon Bedrock offers you the ability to build and configure autonomous 
agents in your application. An agent helps your end-users complete actions based 
on organization data and user input. Agents orchestrate interactions between 
foundation models (FMs), data sources, software applications, and user 
conversations. In addition, agents automatically call APIs to take actions and invoke 
knowledge bases to supplement information for these actions. Developers can save 
weeks of development effort by integrating agents to accelerate the delivery of 
generative artificial intelligence (generative AI) applications . 

With agents, you can automate tasks for your customers and answer questions for 
them. For example, you can create an agent that helps customers process insurance 
claims or an agent that helps customers make travel reservations. You don't have to 
provision capacity, manage infrastructure, or write custom code. Amazon Bedrock 
manages prompt engineering, memory, monitoring, encryption, user permissions, 
and API invocation. 

--- 

Agents for Amazon Bedrock enable the construction and configuration of autonomous agents 
within applications to assist end-users in completing actions leveraging organization data and 
user input. These agents orchestrate interactions among foundation models, data sources, 
software applications, and user dialogues, automating tasks such as processing insurance 
claims or making travel reservations without requiring manual capacity provisioning, 
infrastructure management, or custom code development. Amazon Bedrock handles aspects 
like prompt engineering, memory management, monitoring, encryption, user permissions, 
and API calls. 
Key functionalities of agents include extending foundation models to parse user requests into 
actionable tasks, engaging in natural conversations to gather additional user information, 
executing API calls to fulfill requests, and enhancing performance through data source 
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queries. To deploy an agent, developers may optionally create a knowledge base, configure 
the agent for specific use cases, associate it with a knowledge base for improved 
performance, customize behavior through prompt templates, test the agent using the Amazon 
Bedrock console or API, and deploy it within their application by creating aliases for agent 
versions. This process significantly reduces development time for generative AI applications 
by automating a wide range of tasks. 
 
 

BERT 
BERT (Bidirectional Encoder Representations from Transformers) is a groundbreaking 
model in the field of natural language processing (NLP) developed by Google. It represents a 
significant departure from previous models due to its deep bidirectionality, allowing the 
model to understand the context of a word based on all of its surroundings (left and right of 
the word). BERT is pre-trained on a large corpus of text and then can be fine-tuned with 
additional output layers to perform a wide range of language tasks, such as question 
answering, language inference, and sentiment analysis. 
 
The application of pre-trained language representations like BERT to downstream tasks can 
be approached via two main strategies: feature-based and fine-tuning. 
 
1. Feature-based Approach: In this approach, the pre-trained representations are used as 
additional features for the downstream task. A common example of this strategy is the use of 
pre-trained word embeddings (such as GloVe or Word2Vec) where the embeddings are fixed 
and only the weights of the subsequent layers are trained to perform a specific task. For 
BERT, this would involve extracting the contextual embeddings from one of the BERT layers 
and then using these embeddings as input features to a separate model designed for the 
downstream task. The main advantage of this approach is its flexibility, as it allows for the 
use of pre-trained representations in a wide variety of models and tasks. However, it might 
not leverage the full potential of the pre-trained model since only the extracted features are 
used and not the model's architecture or training capabilities. 
 
2. Fine-tuning Approach: Fine-tuning involves starting with a pre-trained model and 
continuing the training process on the downstream task with a much smaller dataset. For 
BERT, this means adding a small number of task-specific output layers on top of the pre-
trained BERT model, and then training all the parameters end-to-end on the downstream task. 
This approach leverages the pre-trained weights as a starting point, which can significantly 
reduce the amount of data required to achieve high performance on a specific task. Fine-
tuning can adjust both the deep pre-trained parameters and the newly added task-specific 
parameters, allowing the model to adapt more thoroughly to the task at hand. The fine-tuning 
process is generally faster and requires less data than training a model from scratch, making it 
a powerful strategy for applying BERT to a wide range of NLP tasks. 
 
Both strategies have their own sets of advantages and considerations, and the choice between 
them depends on the specific requirements of the task, the available computational resources, 
and the size of the task-specific dataset. Fine-tuning has become the more popular approach 
for leveraging models like BERT, as it often leads to superior performance across a variety of 
tasks with minimal task-specific adjustments. 
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A downstream task in the context of machine learning, and specifically in natural language 
processing (NLP), refers to a specific application or problem that benefits from the use of a 
pre-trained model. Downstream tasks are essentially the target tasks for which the pre-trained 
models, such as BERT, are fine-tuned or adapted to perform specific functions or to make 
predictions based on the learned representations. These tasks are called "downstream" 
because they lie downstream in the workflow, utilizing the upstream pre-training phase's 
learned knowledge and capabilities. 
 
Downstream tasks often involve specific datasets and objectives that require understanding, 
generating, or analyzing text. Examples of downstream tasks in NLP include: 
 
1. Sentiment Analysis: Determining whether a piece of text expresses positive, negative, or 
neutral sentiment. 
2. Question Answering: Providing answers to questions based on the content of a given text. 
3. Named Entity Recognition (NER): Identifying and classifying key elements in text into 
predefined categories, such as the names of people, organizations, locations, expressions of 
times, quantities, monetary values, percentages, etc. 
4. Text Summarization: Generating a concise and fluent summary while retaining the key 
information and overall meaning. 
5. Language Inference: Determining the relationship between sentences, such as whether one 
sentence entails another, contradicts it, or neither. 
6. Machine Translation: Translating text from one language to another. 
 
The pre-training phase involves learning general language representations from large 
corpora of text, which captures a wide range of language understanding capabilities. 
The downstream phase, on the other hand, focuses on leveraging these capabilities to 
perform well on specific tasks by fine-tuning the pre-trained model with task-specific 
data. This allows the model to adjust its pre-learned representations to better suit the nuances 
and requirements of the particular task at hand. 
 
FlashAttention-2: Faster Attention with Better Parallelism and Work 
Partitioning  
 
 

Flash Attention 2 
You can speedup the training throughput by using Flash Attention 2 integration in 
transformers. Check out the appropriate section in the single GPU section to learn 
more about how to load a model with Flash Attention 2 modules. 

 
FlashAttention-2 is an advancement in the domain of Transformers, particularly addressing 
the challenge of scaling Transformers to manage longer sequence lengths. This challenge is 
pivotal for improving performance in various applications, such as language modeling, high-
resolution image understanding, and generation tasks in code, audio, and video. The core 
issue with scaling lies in the attention layer, where runtime and memory requirements 
increase quadratically with sequence length, presenting a significant bottleneck. 
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The original FlashAttention introduced a method that leverages the asymmetric GPU memory 
hierarchy to achieve significant memory savings—moving from a quadratic to a linear 
memory requirement—and a runtime speedup of 2-4x compared to optimized baselines, 
without resorting to approximation. Despite these improvements, FlashAttention's efficiency 
was limited, achieving only 25-40% of the theoretical maximum floating-point operations per 
second (FLOPs/s), primarily due to suboptimal work partitioning among the GPU's thread 
blocks and warps. This suboptimal partitioning led to either low occupancy or unnecessary 
memory operations, hindering performance. 
 
FlashAttention-2 proposes an enhanced approach with improved work partitioning 
mechanisms to address these inefficiencies. Specifically, it introduces three key 
improvements: 
1. Algorithmic Tweaks: Adjustments are made to the algorithm to reduce the number of non-
matrix multiplication (non-matmul) floating-point operations (FLOPs), streamlining the 
process. 
2. Parallelization of Attention Computation: Even for a single attention head, the computation 
is parallelized across different thread blocks on the GPU. This strategy increases the 
occupancy, utilizing the GPU's resources more efficiently. 
3. Work Distribution Within Thread Blocks: Within each thread block, the workload is 
distributed among warps to minimize communication through shared memory, thus reducing 
the overhead associated with such operations. 
 
These enhancements enable FlashAttention-2 to achieve approximately a 2x speedup over the 
original FlashAttention, reaching 50-73% of the theoretical maximum FLOPs/s on NVIDIA 
A100 GPUs. This performance is nearing the efficiency of optimized matrix-multiply 
(GEMM) operations, which are a cornerstone of high-performance computing in deep 
learning. 
 
Empirical validation demonstrates that when FlashAttention-2 is integrated into the training 
process of GPT-style models, it can achieve training speeds of up to 225 teraFLOPs/s per 
A100 GPU, translating to a model FLOPs utilization rate of 72%. This significant 
improvement not only enhances the training efficiency of large-scale models but also opens 
up new possibilities for handling longer sequences in various applications, making it a critical 
advancement in the field of deep learning and Transformers. 
 

Training LLMs on single GPUs 
 
- Practical techniques to enhance model training efficiency on a single GPU focus on 
optimizing memory utilization and training speed. 
- These techniques remain valid for multi-GPU setups, which can benefit from additional 
parallelism methods. 
 
Key considerations for training large models: 
- Balancing data throughput/training time with model performance. 
- Maximizing throughput (samples/second) by utilizing GPU to its limit. 
- Using memory optimization techniques like gradient accumulation if the desired batch size 
exceeds GPU memory limits. 
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- Determining the optimal batch size through hyperparameter tuning to maximize resource 
efficiency. 
 
Methods and tools for training optimization: 
- Batch Size Choice: Improves training speed and optimizes memory. 
- Gradient Accumulation: Optimizes memory by allowing larger effective batch sizes without 
increasing GPU memory usage. 
- Gradient Checkpointing: Optimizes memory by saving only a subset of activations during 
training. 
- Mixed Precision Training: Speeds up training; may save memory depending on model size 
and batch size. 
- Optimizer Choice: Affects both training speed and memory utilization. 
- Data Preloading: Enhances training speed by ensuring efficient data feeding to the GPU. 
- DeepSpeed Zero: Optimizes memory usage, particularly beneficial for large models. 
- torch.compile: Boosts training speed without memory optimization. 
- Parameter-Efficient Fine Tuning (PEFT): Reduces memory footprint by adding trainable 
parameters on top of a frozen model. 
 
Additional optimization strategies: 
- Custom Docker containers with efficient software prebuilds. 
- Models utilizing Mixture of Experts (MoE) for parameter efficiency. 
- Conversion to BetterTransformer for leveraging PyTorch native attention mechanisms. 
- Consideration of multi-GPU setups if single-GPU optimizations are insufficient. 
 
Notable points: 
- Gradient accumulation increases effective batch size without additional GPU memory but 
may slow down training. 
- Mixed precision training leverages lower-precision formats for speed, with potential 
memory savings. 
- Optimizer choice, such as AdamW variants or Adafactor, impacts both speed and memory 
usage. 
- Techniques like data preloading, DeepSpeed Zero, and torch.compile offer various 
efficiency improvements. 
 
These techniques are applicable across different training frameworks, including Trainer and 
PyTorch loops, and can be configured with tools like 🤗 Accelerate for flexible optimization. 
https://huggingface.co/docs/transformers/perf_train_gpu_one 
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Efficient Training on Multiple GPUs 
- Transition to multi-GPU setups when single GPU limitations are reached, applying single-
GPU optimization strategies beforehand. 
- Parallelism forms used in multi-GPU training include data parallelism, tensor parallelism, 
and pipeline parallelism, tailored to specific hardware configurations. 
 
Scalability Strategy: 
- Estimate vRAM requirements using tools like the 🤗 Model Memory Calculator for models 
on the 🤗 Hub. 
 
Parallelization Strategies: 
 
For Single Node / Multi-GPU Setup: 
- Model fits on a single GPU: Use Distributed DataParallel (DDP) or experiment with ZeRO 
for potentially faster results. 
- Model too large for a single GPU: Consider Pipeline Parallel (PP), ZeRO, or Tensor Parallel 
(TP) strategies, depending on connectivity (e.g., NVLINK). 
- Largest layer doesn't fit on a single GPU: Mandatory use of Tensor Parallel (TP) or ZeRO 
with additional single-GPU optimizations. 
 
For Multi-Node / Multi-GPU Setup: 
- Fast inter-node connectivity: Opt for ZeRO or a combination of PP, TP, and Data Parallel 
(DP) for fewer communications. 
- Slow inter-node connectivity: Combine DP with PP, TP, and ZeRO for efficiency. 
 
Data Parallelism (DP) vs. DistributedDataParallel (DDP): 
- DDP is preferred over DP for its efficiency in multi-GPU setups due to reduced 
communication overhead and balanced workload. 
 
ZeRO Data Parallelism: 
- Splits model parameters across GPUs to reduce memory footprint, allowing each GPU to 
hold only a fraction of the model. 
 
Pipeline Parallelism (PP): 
- Splits model into stages across GPUs, processing different batches simultaneously to reduce 
idle times and increase efficiency. 
 
Tensor Parallelism (TP): 
- Divides model tensors across GPUs for parallel processing, requiring fast GPU 
interconnects for efficiency. 
 
Combining Parallelism Strategies: 
- Strategies like DP, PP, and TP can be combined in various configurations (e.g., 2D or 3D 
parallelism) for optimized performance based on specific hardware and model requirements. 
 
FlexFlow: 
- Offers a dynamic approach to parallelism, optimizing across multiple dimensions (Sample, 
Operator, Attribute, Parameter) for static workloads. 
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GPU Selection: 
- Control over the number of GPUs and their selection order can be managed through 
environment variables like CUDA_VISIBLE_DEVICES, optimizing resource usage 
according to the specific hardware setup and model requirements. 
 
This comprehensive approach to multi-GPU training encompasses a variety of parallelism 
strategies and tools, allowing for tailored optimizations that leverage the full potential of 
available hardware resources for efficient and scalable model training. 
https://huggingface.co/docs/transformers/perf_train_gpu_many 
 
 

The open-source advantage 
“Smaug-72B from Abacus AI is available now on Hugging Face, is on top of the LLM leaderboard, and is 
the first model with an average score of 80!! In other words, it is the world’s best open-source foundation 
model,” said Abacus AI CEO Bindu Reddy in a post on X.com. 
“Our next goal will be to publish these techniques as a research paper and apply them to some of the best 
Mistral Models, including miqu (a 70B fine-tine of LLama-2),” she added. “The techniques we used 
specifically target reasoning and math skills, which explains the high GSM8K scores! Our upcoming paper 
will explain more.” 
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Transformers 
https://en.wikipedia.org/wiki/Transformer_(deep_learning_architecture) 
 
RNN: https://machinelearningmastery.com/an-introduction-to-recurrent-neural-networks-
and-the-math-that-powers-them/ 
 

 
Rectified linear units find applications in computer vision[8] and speech recognition[11][12] using deep 
neural nets and computational neuroscience.[13][14][15] 
 
Training a Recurrent Neural Network 
The backpropagation algorithm of an artificial neural network is modified to include the 
unfolding in time to train the weights of the network. This algorithm is based on 
computing the gradient vector and is called backpropagation in time or BPTT algorithm 
for short. 

RNN Architectures 
There are different variations of RNNs that are being applied practically in machine 
learning problems: 
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Bidirectional Recurrent Neural Networks (BRNN) 

In BRNN, inputs from future time steps are used to improve the accuracy of the 
network. It is like knowing the first and last words of a sentence to predict the middle 
words. 

Gated Recurrent Units (GRU) 

These networks are designed to handle the vanishing gradient problem. They have a 
reset and update gate. These gates determine which information is to be retained for 
future predictions. 

Long Short Term Memory (LSTM) with 3 gates INPUT, OUTPUT, FORGET GATE 
LSTMs were also designed to address the vanishing gradient problem in RNNs. LSTMs use 
three gates called input, output, and forget gate. Similar to GRU, these gates determine which 
information to retain. 
It is a recurrent neural network trained using Backpropagation Through Time that overcomes 
the vanishing gradient problem. As such, it can be used to create large recurrent networks 
that, in turn, can be used to address difficult sequence problems in machine learning and 
achieve state-of-the-art results. 
Instead of neurons, LSTM networks have memory blocks connected through 
layers. 

A block has components that make it smarter than a classical neuron and a memory for 
recent sequences. A block contains gates that manage the block’s state and output. A 
block operates upon an input sequence, and each gate within a block uses the 
sigmoid activation units to control whether it is triggered or not, making the change of 
state and addition of information flowing through the block conditional. 

There are three types of gates within a unit: 

• Forget Gate: conditionally decides what information to throw away from the 
block 

• Input Gate: conditionally decides which values from the input to update the 
memory state 

• Output Gate: conditionally decides what to output based on input and the 
memory of the block 

 
Each unit is like a mini-state machine where the gates of the units have weights that are 
learned during the training procedure. 

LSTMs are sensitive to the scale of the input data, specifically when the sigmoid 
(default) or tanh activation functions are used. It can be a good practice to rescale the 
data to the range of 0-to-1, also called normalizing. You can easily normalize the 
dataset using the MinMaxScaler preprocessing class from the scikit-learn library. 
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2	
3	

#	normalize	the	dataset	
scaler	=	MinMaxScaler(feature_range=(0,	1))	
dataset	=	scaler.fit_transform(dataset)	

 
#	create	and	fit	the	LSTM	network 
model	=	Sequential() 
model.add(LSTM(4,	input_shape=(1,	look_back))) 
model.add(Dense(1)) 
model.compile(loss='mean_squared_error',	optimizer='adam') 
model.fit(trainX,	trainY,	epochs=100,	batch_size=1,	verbose=2) 
 
LSTM for Regression Using the Window Method 
You can also phrase the problem so that multiple, recent time steps can be used to 
make the prediction for the next time step. 

This is called a window, and the size of the window is a parameter that can be tuned for 
each problem. 

SageMaker JumpStart 
PDFRSS 
SageMaker JumpStart provides pretrained, open-source models for a wide range of 
problem types to help you get started with machine learning. You can incrementally 
train and tune these models before deployment. JumpStart also provides solution 
templates that set up infrastructure for common use cases, and executable example 
notebooks for machine learning with SageMaker. 

You can deploy, fine-tune, and evaluate pretrained models from popular models 
hubs through the JumpStart landing page in the updated Studio experience. 

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-jumpstart.html 

        In most cases, you will start your generative AI projects with an existing foundation 
model from a model hub such as Hugging Face Model Hub, PyTorch Hub, or Amazon 
SageMaker JumpStart. A model hub is a collection of models that typically contains 
detailed model descriptions including the use cases that they address.  

        Throughout this book, we will use Hugging Face Model Hub and SageMaker 
JumpStart to access foundation models like Llama 2 from Meta (Facebook) and ∫from 
the Technology Innovation Institute (TII) and FLAN-T5 from Google.  
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            Generative AI models are capable of carrying out many different tasks with great 
success. However, you will need to decide if an existing foundation model is suitable for your 
application needs. In Chapter 2, you will learn how to work with these existing foundation 
models right out of the box using techniques called prompt engineering and in-context 
learning. 
We recommend that you try different models for your generative use case and task. Start with 
an existing, well-documented, relatively small (e.g., 7 billion-parameter) foundation model to 
iterate quickly and learn the unique ways of interacting with these generative AI models with 
a relatively small amount of hardware (compared to the larger 175+ billion-parameter 
models). 

   ready to scale your efforts to a larger distributed cluster, you would then migrate to 
SageMaker distributed training jobs to scale to a larger compute cluster using accelerators 
like the NVIDIA GPU or AWS Trainium 

While you may be able to avoid accelerators initially, you will very likely need to use them 
for longer-term development and deployment of more complex models. The sooner you learn 
the unique—and sometimes obscure—aspects of developing with accelerators like NVIDIA 
GPUs or AWS Trainium chips, the better. Fortunately, a lot of the complexity has been 
abstracted by the hardware provider through the NVIDIA CUDA library and AWS Neuron 
SDK, respectively. 

 
 

Amazon Bedrock is a fully managed service that provides access to models from 
Amazon (e.g., Titan) and popular third-party providers (e.g., AI21 Labs, Anthropic, 
Cohere, and Stability AI). This allows you to quickly get started experimenting with 
available foundation models. Bedrock also allows you to privately customize foundation 
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models with your own data as well as integrate and deploy those models into 
generative AI” 

“Adapting a model to a specific use case, task, or domain often includes augmenting 
the model with additional data. AWS also provides multiple implementation options for 
vector stores that store vector embeddings. Vector stores and embeddings are used for 
retrieval-augmented generation (RAG) to efficiently retrieve relevant information from 
external data sources to augment the data used with a generative model. The options 
available include vector engine for Amazon OpenSearch Serverless as well as the k-NN 
plugin available for use with Amazon OpenSearch Service. In addition, both Amazon 
Aurora PostgreSQL and Amazon Relational Database Services (RDS) for PostgreSQL 
include vector stores capabilities through built-in pgvector support. 

If you are looking for a fully managed semantic search experience on domain-specific 
data, you can use Amazon Kendra, which creates and manages the embeddings for 
you. 

A generative AI application includes more than generative models. 
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You will also learn how to use in-context-learning to pass multiple prompt-completion 
pairs (e.g., question-answer pairs) in the “context” along with your prompt input. This 
in-context learning nudges the model to respond similarly to the prompt-completion 
pairs in the context. This is one of the more remarkable capabilities of generative 
models as it temporarily alters the model’s behavior for the duration of just that single 
request. 

Lastly, you will learn some of the most commonly configured generative parameters like 
temperature and top k that control the generative model’s creativity when creating 
content.” 

“It’s important to note that while text-based prompts and completions are implemented 
and interpreted by humans as natural language sentences, generative models convert 
them into sequences of tokens, or word fragments. By combining many of these tokens 
in different elements. By combining many of these tokens in different ways, the model 
is capable of representing an exponential number of words using a relatively small 
number of tokens—often on the order of 30,000–100,000 tokens in the model’s 
vocabulary. 
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“ 1.3 tokens per word,” 

“In-Context Learning with Few-Shot Inference 

        A powerful technique to help your generative model produce better completions 
for your prompt is to include a few prompt-completion pairs inside the context portion 
of your prompt. This is called in-context learning with few-shot inference.” 
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“Greedy versus random sampling” 

For each inference request, you can configure the model to choose the next token 
using either greedy or random sampling. For greedy sampling, the token with the 
highest probability is selected. With random sampling, the model selects the next token 
using a random-weighted strategy across all predicted token probabilities. The different 
sampling methods are shown in Figure 2-2 for the phrase “the student learns from the 
professor and her lectures.” 

top-p and top-k random sampling 

These are the most common inference parameters when using random sampling. 
These parameters provide more fine-grained control for the random sample, which, if 
used properly, should improve the model’s response while allowing it to be creative 
enough to fulfill the generative task. top-k, as you may have guessed, limits the model 
to choosing a token randomly from only the top-k tokens with the highest probability. 
For example, if k is set to 3, you are restricting the model to choose from only the top 
three tokens using the weighted random-sampling strategy. Note that setting top-k to 
a higher number can help reduce repetitiveness, while setting top-k to 1 basically 
gives you greedy decoding. 

“top-p limits the model to randomly sampling from the set of tokens whose cumulative 
probabilities do not exceed p, starting from the highest probability and working down to 
the lowest probability. “top-p can also produce greater variability and is sometimes 
used if it is hard to pick a good top-k value. top-p and top-k can also be used 
together.” 

 

temperature 

This parameter also helps to control the randomness of the model output by modifying 
the shape of the next-token probability distribution. “In contrast to top-k and top-p, 
changing the temperature actually changes the next-token probability distribution, 
which ultimately affects the next-token prediction. “A low temperature (below 1, for 
example) results in stronger peaks where the probabilities are concentrated among a 
smaller subset of tokens. A higher temperature (above 1, for example) results in a flatter 
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next-token probability distribution where the probabilities are more evenly spread 
across the tokens. Setting the temperature to 1 leaves the next-token probability 
distribution unaltered, which represents the distribution learned during model training 
and tuning.” 

LLM models have built a solid understanding of human language as well as a massive 
amount of knowledge across many domains. This is often called parametric memory, 
as the knowledge is captured in the models’ parameters. 

 

Embedding Vectors 

        Embedding vectors, often called the “embeddings,” have been used in machine 
learning, information retrieval, and search use cases for decades. Embeddings are a 
numerical, vectorized representation of any entity of any type, including text, images, 
videos, and audio clips, projected into very high-dimensional vector spaces. 
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“Since these vectors encode the meaning and context of tokens within a larger corpus 
of text, they allow the model to statistically represent and understand human language. 
The closer these tokens are to each other in the vector space, the more similar they are 
in semantic meaning.” 
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“Transformer is primarily focused on helping the model generate a completion to a 
given input prompt. During model pretraining and fine-tuning the Transformer is helping 
the model gain contextual understanding of the language from the input training/tuning 
corpus.” 

 

 

Il meccanismo di "autoattenzione" associa ogni token dei dati a tutti gli altri 
token della sequenza di input 
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This pairwise attention lets the model learn the contextual dependencies, or contextual 
understanding, of the input data during model pretraining. By paying attention to the 
whole input, the Transformer unlocks the model’s ability to learn and represent 
language from the training documents provided. “In practice, the Transformer actually 
learns multiple sets of self-attention weights through multiheaded attention. Each head 
runs in parallel over the same input and learns different aspects of the language. 

Transformers, introduced in the seminal paper "Attention is All You Need" by Vaswani 
et al., have become the foundation of modern natural language processing (NLP). They 
are designed to handle sequential data, like text, in a parallel manner, which 
significantly improves efficiency over traditional models that process data sequentially 
(e.g., RNNs and LSTMs). Transformers rely heavily on the self-attention mechanism to 
weigh the importance of different words within the input data. There are three main 
types of Transformer architectures: Autoencoders, Autoregressive models, and 
Encoder-Decoder models. 

There are three variants of generative transformer-based models overall: 
encoder-only, decoder-only, and encoder-decoder. Each variant is trained with a 
different training objective and, during pretraining, the model weights are updated to 
minimize the loss of the training objectives described next for each variation. Each 
variant is capable of addressing different types of generative tasks, as you will see next. 

Autoencoders 

Autoencoder Transformers are designed to encode input data into a compact 
representation and then decode this representation back into the original form or 
some target form. The encoding process captures the essential information needed to 
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reconstruct the input. In the context of NLP, autoencoder Transformers like BERT 
(Bidirectional Encoder Representations from Transformers) learn to predict missing 
words in a sentence or next sentences, enabling them to understand context and 
meaning from the input text. They are typically used for tasks like sentence 
classification, named entity recognition, and question answering, where understanding 
the input text is crucial. 

Autoregressive Models 

Autoregressive Transformers generate sequences one token at a time, where the 
prediction of each new token is dependent on the tokens that have been generated so 
far. This type of model is inherently sequential in its generation process. GPT 
(Generative Pretrained Transformer) is a prime example of an autoregressive 
Transformer. It's trained to predict the next word in a sentence and can generate 
coherent and contextually relevant text over long passages. Autoregressive models are 
particularly well-suited for tasks like text generation, language modeling, and machine 
translation. 

Encoder-Decoder Models 

Encoder-Decoder Transformers combine both encoding and decoding functionalities 
but are structured to handle input and output sequences that may have different 
lengths and are not directly aligned. The encoder processes the input sequence to 
create a context-rich representation, which the decoder uses to generate the output 
sequence. This architecture is exemplified is ideal for tasks that involve transforming 
input data into some output form, such as machine translation or summarization. The 
encoder captures the meaning of the input text, and the decoder uses this 
understanding to produce the target text. 

 

 

        Encoder-only models, or autoencoders, are pretrained using a technique called 
masked language modeling (MLM), which randomly mask input tokens and try to 
“predict the masked tokens. This is sometimes called a denoising objective. 
Autoencoding models use bidirectional representations of the input to better 
understand the full context of a token—not just the previous tokens in the sequence 
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Encoder-only models are best suited for language tasks that utilize the 
embeddings generated by the encoder, such as text classification. They are not 
particularly useful for generative tasks that continue to generate more text. A well-
known encoder-only model is BERT. The embedding outputs are also useful for 
semantic similarity search—an advanced document-search algorithm beyond simple 
keyword search. You will explore semantic similarity search more in “Retrieval-
Augmented Generation”.” 

Decoder-only models, or autoregressive models, are pretrained using unidirectional 
causal language modeling (CLM), which predicts the next token using only the previous 
tokens—every other token is masked 

 

These models are the standard for generative tasks, including question-answer. The 
families of GPT-3, Falcon, and LLaMA models are well-known autoregressive models. 

Decoder-only, autoregressive models use millions of text examples to learn a 
statistical language representation by continuously predicting the next token from the 
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previous tokens. These models are the standard for generative tasks, including 
question-answer. The families of GPT-3, Falcon, and LLaMA models 

Encoder-decoder models, often called sequence-to-sequence models, use both 
the Transformer encoder and decoder. While the pretraining objectives vary from model 
to model, the popular T5 foundation model (e.g., FLAN-T5) was pretrained using 
consecutive multitoken masking called span corruption. The decoder then attempts to 
reconstruct the masked sequence of tokens, <X>, as shown” 

 

 

 

 

 

 

Using OpenSearch as a vector database brings together the power of traditional 
search, analytics, and vector search in one complete package. OpenSearch’s vector 
database capabilities can accelerate artificial intelligence (AI) application development 
by reducing the effort for builders to operationalize, manage, and integrate AI-
generated assets. Bring your models, vectors, and metadata into OpenSearch to power 
vector, lexical, and hybrid search and analytics, with performance and scalability built 
in. What is a vector database? 

Information comes in many forms: unstructured data, like text documents, rich media, 
and audio, and structured data, like geospatial coordinates, tables, and graphs. 
Innovations in AI have enabled the use of models, or embeddings, to encode all types 
of data into vectors. These vectors are data points in a high-dimensional space that 
capture the meaning and context of an asset, allowing search tools to find similar 
assets by searching for neighboring data points. 
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Vector databases allow you to store and index vectors and metadata, unlocking the 
ability to use low-latency queries to discover assets by degree of similarity. Typically 
powered by k-NN indexes built using algorithms like Hierarchical Navigable Small 
Worlds (HNSW) and Inverted File (IVF) System, vector databases augment k-NN 
functionality by providing a foundation for applications like data management, fault 
tolerance, resource access controls, and a query engine. 

OpenSearch provides an integrated  vector database that can support AI systems by 
serving as a knowledge base. This benefits AI applications like generative AI and natural 
language search by providing a long-term memory of AI-generated outputs. These 
outputs can be used to enhance information retrieval and analytics, improve efficiency 
and stability, and give generative AI models a broader and deeper pool of data from 
which to draw more accurate and truthful responses to queries. 

 

 

 

https://medium.com/@shankar.arunp/augmenting-large-language-models-with-verified-
information-sources-leveraging-aws-sagemaker-and-f6be17fb10a8 
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Scaling laws 

a set of scaling laws have emerged that describe the trade-offs between model size 
and dataset size for a fixed compute budget (e.g., number of GPU hours). These scaling 
laws state that you can achieve better generative model performance by either 
increasing the number of tokens or the number of model parameters. 

        ” “Researchers have found that by increasing the training dataset size instead of 
the model size, you can get state-of-the-art performance that exceeds the 175 billion-
parameter models with a much smaller set of weights. In fact, the “Scaling Laws for 
Neural Language Models” paper shows that if you hold the compute budget constant, 
model performance may increase when you either increase the training dataset size 
(and hold model parameter size constant) or increase the number of model parameters 
(and hold the” 

“This also hints that you can improve performance for smaller models by just training 
them on more data.” 

“The Chinchilla paper implies that the massive 100 billion-plus parameter models like 
GPT-3 may be overparameterized and undertrained. Additionally, they hypothesize that 
you could achieve 100 billion-plus parameter model performance with a small model by 
simply providing more training data to the smaller model. 

        To be more specific, the authors of the Chinchilla paper claim that the optimal 
training dataset size (measured in tokens) is 20x the number of model parameters and 
that anything below that 20x ratio is potentially overparameterized and undertrained. 
“The Chinchilla paper implies that the massive 100 billion-plus parameter models like 
GPT-3 may be overparameterized and undertrained. Additionally, they hypothesize that 
you could achieve 100 billion-plus parameter model performance with a small model by 
simply providing more training data to the smaller model. 

        To be more specific, the authors of the Chinchilla paper claim that the optimal 
training dataset size (measured in tokens) is 20x the number of model parameters and 
that anything below that 20x ratio is potentially overparameterized and undertrained. 

“AWS has also developed purpose-built ML accelerators, AWS Trainium, for high-
performance and cost-efficient training of 100B+ parameter generative AI models. 

“The largest Trn1 instance, at the time of this writing, is powered by 16 AWS Trainium 
chips and has 512 GB of shared accelerator memory.  
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When you try to train a multibillion-parameter model at 32-bit full precision, you will 
quickly hit the limit of a single NVIDIA A100 or H100 GPU with only 80 GB of GPU RAM. 
Therefore, you will almost always need to use quantization when using a single GPU. 
“Quantization reduces the memory needed to load and train a model by reducing the 
precision of the model weights. Quantization converts your model parameters from 32-
bit precision down to 16-bit precision—or even 8-bit or 4-bit. 

 

“bfloat16 has become a popular alternative to fp16 as it captures the full range of fp32 
with only 16-bits. This reduces numerical instabilities during model training caused by 
overflow. 

Optimizing the Self-Attention Layers: FlashAttention 
and Grouped-Query Attention 
FlashAttention 

 The Transformer’s attention layer is a bottleneck when trying to scale to longer input 
sequences because the computation and memory requirements scale quadratically 
O(n2) with the number of input tokens. FlashAttention, initially proposed in a research 
paper,2 is a GPU-specific solution to this quadratic scaling problem.  

Overall, FlashAttention increases self-attention performance by 2–4x and reduces 
memory usage 10–20x by reducing the quadratic O(n2) computational and memory 
requirements down to linear O(n), where n is the number of input tokens in the 
sequence. With FlashAttention, the Transformer scales to handle much longer input 
sequences which allows for better performance on larger input context windows 

Grouped-Query Attention GQA 
“GQA allows queries to be grouped into fewer key and value heads and therefore reduces 
memory consumption of the attention heads. In addition, GQA improves performance by 
reducing the number of memory reads and writes.” 
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Parallel distribution Distributed Data Parallel – Fully 
Sharded Data Parallel 
While these techniques are essential to pretraining large foundation models from scratch, 
they are also useful for adapting foundation models to your custom datasets and use 
cases during a process called fine-tuning. 
 
 
For larger models, you will likely need to use a distributed cluster of GPUs to train these 
massive models across hundreds or thousands of GPUs.  

• Various Distributed Computing Patterns: Includes Distributed Data Parallel (DDP) 
and Fully Sharded Data Parallel (FSDP). 

• Key Difference: Lies in the method of splitting—or sharding—the model across 
GPUs. 

• DDP Use Case: Chosen when model parameters can fit into a single GPU, loading a 
single copy of the model into each GPU. 

• FSDP Necessity: Required if the model is too large for a single GPU, even after 
quantization, necessitating the sharding of the model across multiple GPUs. 

• Data Handling: In both DDP and FSDP, data is divided into batches and distributed 
across all available GPUs to enhance GPU utilization and cost efficiency. 

• Trade-off: Increased GPU utilization and cost efficiency come at the cost of some 
communication overhead. 

  
 
“PyTorch comes with an optimized implementation of DDP that automatically copies your 
model onto each GPU (assuming it fits into a single GPU using a technique such as 
quantization), splits the data into batches, and sends the batches to each GPU in parallel. In 
traditional data parallel training, a complete copy of the model is maintained on 
every GPU, and only the input data is divided among them. Each GPU computes 
gradients independently based on its subset of the data, and these gradients are 
then aggregated across all GPUs to update the model. While this approach is 
straightforward, it significantly limits the size of models that can be trained, as each 
GPU must have enough memory to store the entire model and the associated data 
for gradient computation. FSDP addresses this limitation by dividing (sharding) 
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the model's parameters across the GPUs. Each GPU stores only a portion of the 
model's parameters, and during the forward and backward passes of training, FSDP 
dynamically loads the necessary parameters into GPU memory as needed. 

 
“FSDP is a common distributed computing strategy supported by Amazon SageMaker. T” 
 
--- 

Fine-tuning 
Instruction dataset: you can achieve very good results with instruction fine-tuning using a 
relatively small instruction dataset—often just 500–1,000 examples is enough.” 
 
 

RAG Langchain orchestration architecture 
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GenAIOps, FMOps, or LLMOps: Operationalizing the 
Generative AI Project Life Cycle  
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BART vs BERT 
Feature BART BERT 

 
Bidirectional and Auto-
Regressive Transformers 

Bidirectional Encoder Representations 
from Transformers 

Architecture Encoder-Decoder Encoder-Only 

Primary Use 
Text generation, such as 
summarization and translation 

Text understanding, such as 
classification and entity recognition 

Pretraining 
Task Noising and reconstructing text 

Masked language model and next 
sentence prediction 

Encoding 
Bidirectional encoding of 
corrupted text Bidirectional encoding of unaltered text 

Decoding 
Autoregressive decoding to 
reconstruct or generate text 

Not applicable, as BERT does not 
generate text 

Model Output 
Capable of generating new text 
based on input 

Generates representations of input text 
for classification or other tasks 

Use Cases 
Content creation, translation, 
summarization 

Sentiment analysis, question 
answering, named entity recognition 

Training 
Approach 

Denoising autoencoder: learns by 
correcting intentionally corrupted 
text 

Learns by predicting randomly masked 
words in sentences and predicting next 
sentences 

Interactivity 
Generates output text 
interactively, one token at a time 

Analyzes input text as a whole to 
provide embeddings or perform 
specific tasks 

This comparison highlights the fundamental differences in architecture and application 
between BART and BERT. While BART is designed for tasks that involve both 
understanding and generating text, BERT focuses on understanding and interpreting text, 
making it ideal for tasks that require insights into language structure and content without the 
need for generating new text. 
 


