
 1

GenAI AWS Architecture .. 3

GenAIOps, FMOps, or LLMOps ... 3

Experiments ... 4

TRASFORMERS .. 4

ENCODER-ONLY ... 4

DECODER-ONLY AUTOREGRESSIVI (FLACON, GPT3, LLAMA2) 5

ENCODE-DECODER SEQ2SEQ ... 7

SCALING-LAWS: CHINCILLA PAPER ... 8

4 MEMORY OPTIMIZATIONS IN FULL OR FINE-TUNING TRAININGS 8
FULL FINE-TUNING ... 9

Instruction Fine-Tuning and Evaluation ... 9

Mixture-of-Experts (MoE) ... 10

Model forgetting .. 10

EVALUATION OF MODELS .. 11

4 PEFT PARAMETER-EFFICIENT FINE TUNING: lora, qlora, soft prompt, RLHF 11

3 Model Deployment Optimizations: prun,quantiz, distil 12

Large Model Inference Container: INFERENTIA, NEURON .. 13
2 Model Update and Deployment Strategies (AB testing,shadow deployment) 13

Context-Aware Reasoning Applications Using RAG and Agents: LANGCHAIN,
REACT, PAL ... 14

Vector embeddings - from langchain.vectorstores import ... 14
Prompt Augmentation ... 16

LangChain - AWS Bedrock .. 16
Components of RAG: ... 17

Chains in LangChain ... 17
RetrievalQA in LangChain .. 17

ReACT (prompt+Questions Thought Action Observation) .. 18

Amazon Bedrock endpoints ... 18

Boto3 documentation .. 19

Open LLM Leaderboard .. 20
AutoGPTQ LLM Quantization .. 20
Knowledge base for Amazon Bedrock ... 22
Agents for Amazon Bedrock ... 23

BERT ... 24

Flash Attention 2 ... 25

Training LLMs on single GPUs ... 26

Efficient Training on Multiple GPUs .. 28

The open-source advantage .. 29

 2

Training a Recurrent Neural Network .. 30

RNN Architectures .. 30

LSTM for Regression Using the Window Method .. 32

SageMaker JumpStart .. 32

Scaling laws .. 46

Optimizing the Self-Attention Layers: FlashAttention and Grouped-Query Attention
 ... 47

FlashAttention .. 47

Grouped-Query Attention GQA .. 47

Parallel distribution Distributed Data Parallel – Fully Sharded Data Parallel 48

Fine-tuning .. 49

RAG Langchain orchestration architecture ... 49

GenAIOps, FMOps, or LLMOps: Operationalizing the Generative AI Project Life
Cycle .. 55

BART vs BERT .. 56

 3

GenAI AWS Architecture

GenAIOps, FMOps, or LLMOps

 4

Experiments

TRASFORMERS

QUERY, KEY,VALUE, SOFTMAX

ENCODER-ONLY
- MASKED LANGUAGE MODELING MLM

Encoder-only models are best suited text classification. They are not particularly useful
for generative tasks that continue to generate more text. A well-known encoder-only
model is BERT. USATI ANCHE PER RAG (SIMILARITY SEARCH)

1. Sentiment Analysis: Analyzing text to determine the sentiment expressed (positive,

negative, neutral).
• Model Example: BERT
• AWS Service: Amazon Comprehend

2. Text Classification: Categorizing text into predefined categories, such as tagging
customer feedback into topics.

 5

• Model Example: DistilBERT
• AWS Service: Amazon Comprehend

3. Named Entity Recognition (NER): Identifying and classifying key information
(names, places, dates) in text.

• Model Example: BERT
• AWS Service: Amazon Comprehend

4. Document Summarization: Summarizing long documents into concise summaries.
• Model Example: Longformer
• AWS Service: There's no direct AWS service for this specific task as of my

last update, but you can deploy custom models on Amazon SageMaker.
5. Question Answering: Extracting answers from a text given a question.

• Model Example: BERT
• AWS Service: Amazon Kendra for question-answering capabilities, although

Kendra is more of a search service, it can be complemented with custom
BERT models deployed on Amazon SageMaker for specific QA tasks.

6. Language Modeling: Predicting the next word or character in a sequence.
• Model Example: GPT (Note: GPT is an encoder-decoder model but can be

used in an encoder-only mode for specific tasks).
• AWS Service: Custom models can be deployed on Amazon SageMaker.

7. Feature Extraction: Generating dense vector representations of text for use in
various machine learning models.

• Model Example: RoBERTa
• AWS Service: Amazon SageMaker to deploy custom models for extracting

features.
8. Text Similarity and Clustering: Determining how similar two pieces of text are and

clustering similar texts together.
• Model Example: Sentence Transformers
• AWS Service: Amazon SageMaker for deploying custom models.

9. Fake News Detection: Identifying and flagging fake news articles.
• Model Example: BERT
• AWS Service: Amazon Comprehend for sentiment and entity recognition as

part of a larger fake news detection pipeline, with custom logic on Amazon
SageMaker.

10. SEO Keyword Extraction: Extracting relevant keywords from content for SEO
optimization.

• Model Example: BERT
• AWS Service: Amazon Comprehend to extract key phrases which can then be

refined for SEO purposes.

DECODER-ONLY AUTOREGRESSIVI (FLACON, GPT3, LLAMA2)
TRAINED USING CAUSAL LANGUAGE MODELING CLM, PREDICT NEXT TOKEN.
Aka Autoregressive language modeling: predicting the next word in a sequence given the previous words. The "causal" aspect refers to the
fact that the model generates text based on the causal (or sequential) order of the words, where each word prediction is dependent only on
the preceding words, not on any future words. This approach is foundational for many language generation models, including autoregressive
transformers like GPT (Generative Pre-trained Transformer). generate sequences of data by predicting one element at a time,
using the history of previously generated elements as context.

 6

Tasks: generation or prediction where the output is sequential in nature.

1. Text Generation: Generating coherent and contextually relevant text based on a prompt.

• Model Example: GPT-3 (Generative Pre-trained Transformer 3)
• AWS Service: Amazon SageMaker for deploying custom GPT-3 models.

2. Machine Translation: Translating text from one language to another.
• Model Example: Transformer Base or Transformer Big models (original Transformer

model variants)
• AWS Service: Amazon Translate for ready-to-use translation, or Amazon SageMaker

for custom transformer models.
3. Language Modeling: Predicting the next word in a sentence given the previous words.

• Model Example: GPT-2
• AWS Service: Amazon SageMaker

4. Code Generation: Generating programming code based on a description of functionality.
• Model Example: Codex (a GPT-3 variant fine-tuned for understanding and generating

code)
• AWS Service: Amazon SageMaker for deploying custom Codex models.

5. Conversational AI and Chatbots: Creating chatbots that can engage in human-like
conversation.

• Model Example: GPT-3
• AWS Service: Amazon Lex for chatbots + sagemaker

6. Music Composition: Generating new pieces of music in a sequential manner, note by note
or beat by beat.

• Model Example: Transformer-based models tailored for music generation
• AWS Service: Amazon SageMaker for deploying custom models.

7. Predictive Text Completion: Completing a user's sentence in real-time as they type, to
speed up writing.

• Model Example: GPT-3
8. Speech Recognition: Transcribing spoken language into text by predicting sequences of

words.
• Model Example: Wav2Vec 2.0 (While primarily a feature extractor, it can be used in

an autoregressive setup for speech recognition)
• AWS Service: Amazon Transcribe for direct speech recognition service, or Amazon

SageMaker for custom models.
9. Image Captioning: Generating descriptive captions for images by sequentially predicting

words.
• Model Example: Transformer models that combine CNN features with

autoregressive decoding.
10. Handwriting Generation: Producing text that mimics handwriting by generating sequences

of strokes or characters.
• Model Example: Transformer-based models designed for sequence-to-sequence

tasks

 7

ENCODE-DECODER SEQ2SEQ
Encoder-decoder architectures in transformers are designed for tasks that involve
transforming an input sequence into an output sequence, where the two sequences can be of
different lengths and structures. This architecture is particularly useful for tasks that require
an understanding of the entire input before generating the output.
Designed for translation, are also very useful for text-summarization.

1. Machine Translation: Translating a text from one language to another while
maintaining the context and nuances of the original language.

• Model Example: Transformer (original model by Vaswani et al.)
• AWS Service: Amazon Translate for direct translation services +SageMaker

2. Text Summarization: Creating a concise summary of a longer text that captures the
main points.

• Model Example: BART (Bidirectional and Auto-Regressive Transformers)
3. Question Answering: Providing answers to questions based on a given context

paragraph or document.
• Model Example: T5 (Text-to-Text Transfer Transformer)
• AWS Service: Amazon SageMaker for deploying custom T5 models for

sophisticated question-answering systems.
4. Text-to-Speech (TTS): Converting written text into spoken words, generating

human-like speech.
• Model Example: Tacotron 2 (Although not a transformer, it's an encoder-

decoder model used for TTS)
• AWS Service: Amazon Polly for text-to-speech services, or Amazon

SageMaker for deploying custom models.
5. Speech-to-Text: Transcribing spoken words into written text, accurately capturing the

spoken content.
• Model Example: DeepSpeech (While not a transformer, it's an example of an

encoder-decoder model used for STT)
• AWS Service: Amazon Transcribe for speech recognition, or Amazon

SageMaker for deploying custom models.
6. Image Captioning: Generating descriptive text for an image.

• Model Example: Show and Tell (a neural image caption generator)
• AWS Service: Amazon SageMaker for deploying custom models that combine

CNNs for image processing and transformers for text generation.
7. Name Entity Recognition (NER): Identifying and classifying named entities in text

into predefined categories such as the names of persons, organizations, locations.
• Model Example: BERT (Bidirectional Encoder Representations from Transformers) for encoding, with a

decoding layer for classification: trained with MLM and next sentence
prediction (NSP).

• AWS Service: Amazon Comprehend for ready-to-use NER, SageMaker
8. Document Translation: Translating entire documents while preserving formatting

and structure.
• Model Example: Transformer models specifically fine-tuned for document-

level translation
• AWS Service: Amazon Translate for straightforward document translation, or

Amazon SageMaker for deploying and fine-tuning custom models.

 8

9. Dialogue Systems: Building systems capable of conducting a conversation with
human users, understanding their input, and generating appropriate responses.

• Model Example: T5 or DialoGPT (a variant of GPT-2 optimized for dialogue)
• AWS Service: Amazon Lex for creating conversational interfaces, integrated

with custom models on Amazon SageMaker for more complex dialogue
handling.

10. Code Generation: Automatically generating programming code from a natural
language description.

• Model Example: Codex (built on GPT-3)
• AWS Service: Amazon SageMaker for deploying custom Codex models or

other code generation models.

SCALING-LAWS: CHINCILLA PAPER
optimal training dataset size (in tokens) is 20x the number of model parameters and that
anything below that 20x ratio is potentially overparameterized and undertrained.

Unveiling	Transformer	Learning	for	Trustworthy	AI		
		
Generative	transformer	models	have	become	increasingly	complex,	with	large	numbers	
of	parameters	and	the	ability	to	process	multiple	input	modalities.	Current	methods	for	
explaining	their	predictions	are	resource-intensive.	Most	crucially,	they	require	
prohibitively	large	amounts	of	extra	memory,	since	they	rely	on	backpropagation	that	
allocates	almost	twice	as	much	GPU	memory	as	the	forward	pass.	This	makes	it	difficult,	
if	not	impossible,	to	use	them	in	production.	We	present	AtMan	(NeurIPS	2023),	which	
provides	explanations	of	generative	transformer	models	(language	and	multimodal)	at	
almost	no	extra	cost.	Specifically,	AtMan	is	a	modality-agnostic	perturbation	method	
that	manipulates	the	attention	mechanisms	of	transformers	to	produce	relevance	maps	
for	the	input	with	respect	to	the	output	prediction.	Instead	of	using	backpropagation,	
AtMan	applies	a	parallelizable	token-based	search	method	based	on	cosine	similarity	
neighborhood	in	the	embedding	space.	Our	exhaustive	experiments	on	text	and	image-
text	benchmarks	demonstrate	that	AtMan	outperforms	current	state-of-the-art	
gradient-based	methods	on	several	metrics	while	being	computationally	efficient.	As	
such,	AtMan	is	suitable	for	use	in	large	model	inference	deployments,	making	
generative	AI	auditable	and	trustworthy	and	enabling	a	human	expert	to	take	
responsibility,	even	in	environments	where	there	is	no	clear,	easy	answer.	

4 MEMORY OPTIMIZATIONS IN FULL OR FINE-TUNING
TRAININGS
E’ O(N^2): optimizing the self-Attention Layers CON

1) QUANTIZATION, OR
2) FLASHATTENTION (SELF ATTENTION TRAINING DIVENTA O(N)) SU GPU
3) GROUPED QUERY ATTENTION: By grouping queries together before computing

attention scores, this method reduces the computational complexity and memory

 9

usage. It operates by aggregating similar or related queries into groups and then
performing the attention operations on these groups instead of individual queries. This
approach allows the model to focus computational resources on processing groups of
queries that share common features or targets, enhancing the model's scalability and
performance, especially in tasks involving large input sequences or datasets.

4) DISTRIBUTED COMPUTING
a. DISTRIBUTED DATA PARALLEL

b. FULLY SHARDED DATA PARALLEL (2019 ZERO PAPER): sharding the

model with gradients, activations, and optimizer states—across the GPUs to
achieve zero redundancy in the system.

Train model on AWS Trainium hardware with AWS Neuron SDK OR Hugging Face
Optimum Neuron library which integrates the Hugging Face Transformers ecosystem with
the Neuron SDK.

FULL FINE-TUNING

Instruction Fine-Tuning and Evaluation
- 500-1000 examples should be enough. If you provide instructions for just a single

task (e.g., summarization) during fine-tuning, the model may experience
“catastrophic forgetting” in which the model becomes so good at a single task
that it may lose its ability to handle, or generalize to, other tasks.

 10

- PROMPT TEMPLATES LIKE dialogue-summary. FLAN T5.TEMPLATE
- Amazon SageMaker JumpStart: scale your fine-tuning workload to a large,

distributed cluster of GPU instances simply by changing a single parameter,
instance_count

Mixture-of-Experts (MoE)
Mixture-of-Experts (MoE) layers enhance a language model's capacity without
significantly increasing computational demands. By substituting standard layers
with MoE layers, which consist of multiple specialized layers (experts) with unique
parameters, the model gains flexibility and depth. A gating mechanism selectively
activates these experts for specific inputs, enabling efficient, sparse computation.
Originating from early research on conditional computation, MoE layers have
evolved to facilitate the training of large-scale models by offering a scalable way
to boost model complexity and performance, particularly beneficial in areas like
language modeling where larger model capacity often translates to improved
outcomes.

“As the training of giant dense models hits the boundary on the availability and
capability of the hardware resources today, Mixture-of-Experts (MoE) models have
become one of the most promising model architectures due to their significant
training cost reduction compared to quality equivalent dense models.” - Mixture-of-
Experts (MoE) layers are simple and allow us to increase the size or capacity of a
language model without a corresponding increase in compute. We just replace
certain layers of the model with multiple copies of the layer—called “experts”—that
have their own parameters. Then, we can use a gating mechanism to (sparsely)
select the experts used to process each input. This idea has its roots in research on
conditional computation in the early 1990s [15, 30] and allows us to train massive
models in a tractable manner, which is helpful in domains—such as language
modeling—that benefit from models with extra capacity. Here, we will study the MoE,
its origins, and how it has evolved over the last two decades.

Model forgetting
https://www.buonaiuto.work/enhancing-multilingual-models-with-active-forgetting/

 11

EVALUATION OF MODELS
- ROUGE (N-GRAM) FOR SUMMARIZATION TASKS,
- BLUE FOR TRANSLATIONS
- GLUE, SUPERGLUE
- HELM
- BIG-BENCH

4 PEFT PARAMETER-EFFICIENT FINE TUNING: lora,
qlora, soft prompt, RLHF

- LORA ("Low-Rank Adaptation”):the number of

parameters to be trained by freezing all of the original
model parameters and inserting a pair of rank
decomposition matrices alongside the original weights of
a targeted set of modules (e.g., layers) in the model—
typically the linear layers, including self-attention. keep
the original weights of the model frozen and train these
smaller matrices using the same supervised learning
process. The size of the low-rank matrices is set by the
parameter called rank (r).

- PROMPT TUNING AND SOFT PROMPTS

 12

- RLHF FOR Helpful-Honest-Harmless

o Amazon SageMaker Ground Truth for Human Annotations
o PPO Proximal Policy Optimization RL Algorithm to update model with

new weights

o Parameter-Efficient Fine-Tuning LORA with RLHF

3 Model Deployment Optimizations: prun,quantiz, distil
The size of generative AI models often presents a challenge for deployment in terms of
compute, storage, and memory requirements, as well as how to ensure low-latency
completions. One of the primary ways to optimize for deployment is to take advantage of
techniques that aim to reduce the size of the model, typically referred to as model
compression.

1) PRUNING (SPARSEGPT)
2) QUANTIZATION Post-Training Quantization with GPTQ Hugging Face Optimum

library
3) DISTILLATION reduces computation and improve perf TEACHER-STUDENT.

The teacher model’s output is used to “distill” knowledge to the student model.
The teacher models’ predicted tokens are known as soft labels, while the student
models’ predicted tokens are called soft predictions. In parallel, you need to compare
the student models’ predictions (hard predictions) against the ground truth hard labels
from the prompt dataset. The difference is the student loss. The distillation loss and
student loss are combined and used to update the student models’ weights using

 13

standard backpropagation.

a. Hugging Face Optimum library for distillation

Large Model Inference Container: INFERENTIA, NEURON

- AWS Inferentia: Purpose-Built Hardware for Inference; family of accelerators, , is

purpose-built for deep learning inference workloads. The AWS Neuron SDK
interacts with AWS Inferentia.

- AWS Neuron is a software development kit (SDK) enabling high-
performance deep learning acceleration using AWS Inferentia and
Trainium

2 Model Update and Deployment Strategies (AB testing,shadow deployment)
- A/B Testing
- Shadow deployment

 14

- Amazon CloudWatch

Context-Aware Reasoning Applications Using RAG and
Agents: LANGCHAIN, REACT, PAL
RAG= retrieval-augmented generation

Agents orchestrate prompt-completion workflows between user requests, foundation models,
and external data sources and applications while using the foundational model as brain using
ReACT chain of thoughts (COT).

Vector embeddings - from langchain.vectorstores import
LangChain integrates with many vector stores, such as ElasticSearch, OpenSearch,
Pinecone, and Facebook AI Similarity Search (FAISS)
Feature/Aspect ElasticSearch OpenSearch Pinecone FAISS (Facebook AI Similarity

Search)

Architecture Distributed search engine
based on Lucene

Fork of Elasticsearch,
also based on Lucene

Managed vector database
designed for similarity
search

Library for efficient similarity
search of dense vectors

Primary Use
Cases

Full-text search, structured
search, analytics

Full-text search,
structured search,
analytics

Similarity search in high-
dimensional spaces

Efficient similarity search and
clustering of dense vectors

Scalability Highly scalable, distributed
nature

Highly scalable,
distributed nature

Built for scalability and
performance at scale

Highly efficient on large datasets,
but scalability depends on the
hardware and integration

 15

Feature/Aspect ElasticSearch OpenSearch Pinecone FAISS (Facebook AI Similarity
Search)

Managed Service Available via Elastic Cloud
and other cloud providers

Available via AWS
and other cloud
providers

Fully managed service Not a managed service; requires
self-hosting and integration

Vector Search
Support

Supports vector search
through dense vector fields
and plugins like
Elasticsearch Learning to
Rank

Similar support as
Elasticsearch,
including plugins

Native and primary focus
on efficient vector search

Specialized in vector similarity
search, requires integration with
other systems for full search
capabilities

Machine Learning
Integration

Integrates with Elastic ML
for anomaly detection and
forecasting

Integrates with Elastic
ML for anomaly
detection and
forecasting

Focuses on vector search,
but can be used alongside
ML models for enriched
applications

Primarily for ML applications,
especially those requiring
similarity search, such as
recommendation systems

Open Source Yes, with commercial
features available

Fully open source Proprietary, with a free tier
available

Open source

Optimized for General search and
analytics

General search and
analytics

Similarity search in vector
spaces

Dense vector similarity search
and clustering

Customizability High, through various
plugins and configurations

High, similar to
Elasticsearch

Configurable indices and
schemas

High, but focused on algorithmic
customization for search and
clustering

Ease of Use User-friendly with
extensive documentation
and community support

Similar to
Elasticsearch

Designed for simplicity in
similarity searches

Requires more specialized
knowledge to implement and
integrate

Feature/Aspect ElasticSearch & OpenSearch Pinecone FAISS
Performance:
Read/Search

High, with optimizations for
distributed search

Very high, optimized
for vector similarity
search

Extremely high for similarity search;
optimized for GPU/CPU

Performance:
Write/Index

High, efficient indexing with
support for bulk operations

High, supports efficient
batch indexing

Variable, depends on setup; batch
processing can be efficient but requires
more manual management

Ease of Use:
Read/Search

Relatively easy with DSL and
REST APIs; extensive client
libraries

Very easy for vector
searches; simplified
API

More complex; requires manual setup of
search parameters and index loading

Ease of Use:
Write/Index

Easy with REST APIs and
client libraries; bulk indexing
supported

Easy with simplified
API for batch indexing

More complex; requires understanding of
vector space partitioning and indexing
techniques

LOC for 100
Reads

Low to moderate; bulk search
operations can reduce LOC

Low; streamlined API
for search queries

Moderate to high; complexity depends on
the integration level

LOC for 100
Writes

Low to moderate; bulk
indexing can significantly
reduce LOC

Low; simplified API
for batch updates

High; requires manual data preparation
and batch processing setup

 16

Creating vector embeddings that store
numeric representations of text data in
vector stores provides for efficient
document search and retrieval techniques
in RAG architectures. Documents are
often large and contain varied degrees of
related information on a variety of topics,
some more related than others. you need to
consider efficient strategies for optimizing
the storage and retrieval of these
documents as well as minimizing the risk
of losing context. Because LLMs have fixed context window limitations, you also need to
develop document storage and retrieval strategies that consider those limitations. “RAG will
be used to augment the prompt with additional information prior to calling the LLM.”

Chunking

Reranking with “Maximum Marginal Relevance (MMR)”

Prompt Augmentation
 Augmented prompt
 Completion prompt

LangChain - AWS Bedrock

 17

LangChain is a framework designed to facilitate the creation, combination, and
experimentation with different components in language models, especially in the context of
building applications that leverage large language models (LLMs) for various tasks. One of
the concepts within LangChain is the use of "chains," which are sequences of components
linked together to perform complex tasks. These components can include language models,
databases, retrieval systems, and more. The framework allows for the creation of
sophisticated workflows by chaining together different functionalities.

Components of RAG:
1. Retriever: This component is responsible for querying a large dataset or document

collection to find content that is relevant to the input question or prompt. The retrieval
is usually based on semantic similarity, meaning the retriever looks for documents
that semantically relate to the question, even if they don't contain the exact words.

2. Generator: The retrieved documents are then passed to a generative model, which
synthesizes the information contained in them to generate a coherent and contextually
relevant answer. This model can be based on architectures like Transformers, and it
leverages the information from the retrieved documents to enhance its responses.

Chains in LangChain
Chains are essentially pipelines where the output of one component serves as the input for the
next. This modular approach enables developers to build complex language processing
applications by combining simpler, reusable components. For example, a chain might involve
retrieving relevant documents, summarizing content, and then generating answers based on
the summarized information.
https://github.com/svpino/youtube-rag/blob/main/rag.ipynb

RetrievalQA in LangChain
RetrievalQA, or Retrieval-based Question Answering, is a specific use case within
LangChain where a chain is designed to answer questions by retrieving relevant information
from a database or collection of documents before attempting to generate an answer. This
approach mimics how humans often answer questions: by first finding relevant sources of
information and then synthesizing answers based on what they've found.
How RetrievalQA Works in LangChain:

1. Question Processing: The chain begins with a question or prompt from the user. This input is processed to understand the context and intent.
2. Document Retrieval: The next step involves retrieving relevant documents or data that may contain the answer to the question. This is typically done using a

retrieval system that can search through a large corpus of text based on keywords, semantic similarity, or other criteria relevant to the question.
3. Document Processing: The retrieved documents might be processed further, such as by summarizing them or extracting key pieces of information. This step

reduces the amount of data that the next component in the chain has to handle and focuses on the most relevant information.
4. Answer Generation: Finally, based on the processed information from the retrieved documents, the chain generates an answer to the original question. This

can involve a language model that synthesizes information from the documents into a coherent and concise answer.
5. Feedback/Iteration: Optionally, the system can incorporate feedback mechanisms to refine the answers or improve the retrieval process, enhancing accuracy

over time.

 18

ReACT (prompt+Questions Thought Action Observation)

Amazon Bedrock endpoints
https://docs.aws.amazon.com/bedrock/latest/userguide/api-setup.html

To connect programmatically to an AWS service, you use an endpoint. Refer to
the Amazon Bedrock endpoints and quotas chapter in the AWS General Reference
for information about the endpoints that you can use for Amazon Bedrock.

Amazon Bedrock provides the following service endpoints.

• bedrock – Contains control plane APIs for managing, training, and deploying
models. For more information, see Amazon Bedrock Actions and Amazon
Bedrock Data Types.

• bedrock-runtime – Contains runtime plane APIs for making inference
requests for models hosted in Amazon Bedrock. For more information,
see Amazon Bedrock Runtime Actions and Amazon Bedrock Runtime Data
Types.

• bedrock-agent – Contains control plane APIs for creating and managing
agents and knowledge bases. For more information, see Agents for Amazon
Bedrock Actions and Agents for Amazon Bedrock Data Types.

• bedrock-agent-runtime – Contains control plane APIs for managing,
training, and deploying models. For more information, see Agents for Amazon
Bedrock Runtime Actions and Agents for Amazon Bedrock Runtime Data
Types.

https://boto3.amazonaws.com/v1/documentation/api/latest/index.html

 19

Boto3 documentation
You use the AWS SDK for Python (Boto3) to create, configure, and manage
AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and
Amazon Simple Storage Service (Amazon S3). The SDK provides an object-
oriented API as well as low-level access to AWS services.

Supported foundation models in Amazon Bedrock

Introducing The Foundation Model Transparency Index
100 indicators for transparency pdf

Less transparency makes it harder for other businesses to know if they can safely build
applications that rely on commercial foundation models; for academics to rely on
commercial foundation models for research; for policymakers to design meaningful
policies to rein in this powerful technology; and for consumers to understand model
limitations or seek redress for harms caused.

 20

Open LLM Leaderboard

📐 The 🤗 Open LLM Leaderboard aims to track, rank and evaluate open LLMs and
chatbots.

https://github.com/EleutherAI/lm-evaluation-harness

• Over 60 standard academic benchmarks for LLMs, with hundreds of
subtasks and variants implemented.

AutoGPTQ LLM Quantization
An easy-to-use LLM quantization package with user-friendly APIs, based on GPTQ
algorithm (weight-only quantization).

State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow

🤗 Transformers provides thousands of pretrained models to perform tasks on
different modalities such as text, vision, and audio.

These models can be applied on:

 21

• 📝 Text, for tasks like text classification, information extraction, question
answering, summarization, translation, and text generation, in over 100
languages.

• 🖼 Images, for tasks like image classification, object detection, and
segmentation.

• 🗣 Audio, for tasks like speech recognition and audio classification.

Transformer models can also perform tasks on several modalities combined, such
as table question answering, optical character recognition, information extraction
from scanned documents, video classification, and visual question answering.

🤗 Transformers provides APIs to quickly download and use those pretrained models
on a given text, fine-tune them on your own datasets and then share them with the
community on our model hub. At the same time, each python module defining an
architecture is fully standalone and can be modified to enable quick research
experiments.

🤗 Transformers is backed by the three most popular deep learning libraries
— Jax, PyTorch and TensorFlow — with a seamless integration between them. It's
straightforward to train your models with one before loading them for inference with
the other.

https://huggingface.co/models

Current number of checkpoints: 531k

>>> from transformers import pipeline

Allocate a pipeline for sentiment-analysis

>>> classifier = pipeline('sentiment-analysis')

>>> classifier('We are very happy to introduce pipeline to the transformers
repository.')

[{'label': 'POSITIVE', 'score': 0.9996980428695679}]

https://www.pluralsight.com/resources/blog/data/get-started-amazon-bedrock

 22

To run this code, you first need to install the AWS SDK for Python called boto3
From the terminal, type "pip install boto3"
import boto3
import json

Create the client object for interacting with Amazon Bedrock
Be sure to select a region where Amazon Bedrock is available
bedrock = boto3.client(
 service_name='bedrock-runtime',
 region_name='us-west-2'
)

The input we'll send to the model
TIP: You can get this info in the playgrounds by clicking "View API request" and then
updating the code below
input = {
 "modelId": "meta.llama2-13b-chat-v1",
 "contentType": "application/json",
 "accept": "*/*",
 "body": "{\"prompt\":\"I need an idea for an app to build on Amazon
Bedrock.\",\"max_gen_len\":512,\"temperature\":0.5,\"top_p\":0.9}"
}

The response from the model
response = bedrock.invoke_model(body=input["body"],
 modelId=input["modelId"],
 accept=input["accept"],
 contentType=input["contentType"])

response_body = json.loads(response['body'].read())

Print the response from the model
print(response_body)

With fine-tuning, you take one of the base models (like Llama or Titan) with its general
knowledge, then you augment it with your own data.
In Amazon Bedrock, you can get to this functionality by clicking on Custom
models on the left-hand navigation, then clicking Customize model→Create Fine-tune
job. Custom models can be very expensive, so I would not recommend going through with
this unless you really know what you’re doing and have the budget to support it.
https://docs.aws.amazon.com/bedrock/latest/userguide/what-is-bedrock.html

Knowledge base for Amazon Bedrock
Knowledge base for Amazon Bedrock provides you the capability of amassing data
sources into a repository of information. With knowledge bases, you can easily build
an application that takes advantage of retrieval augmented generation (RAG), a
technique in which the retrieval of information from data sources augments the

 23

generation of model responses. Once set up, you can take advantage of a
knowledge base in the following ways.

• Configure your RAG application to use the RetrieveAndGenerate API to query
your knowledge base and generate responses from the information it
retrieves.

• Associate your knowledge base with an agent (for more information,
see Agents for Amazon Bedrock) to add RAG capability to the agent by
helping it reason through the steps it can take to help end users.

• Create a custom orchestration flow in your application by using
the Retrieve API to retrieve information directly from the knowledge base.

Agents for Amazon Bedrock
Agents for Amazon Bedrock offers you the ability to build and configure autonomous
agents in your application. An agent helps your end-users complete actions based
on organization data and user input. Agents orchestrate interactions between
foundation models (FMs), data sources, software applications, and user
conversations. In addition, agents automatically call APIs to take actions and invoke
knowledge bases to supplement information for these actions. Developers can save
weeks of development effort by integrating agents to accelerate the delivery of
generative artificial intelligence (generative AI) applications .

With agents, you can automate tasks for your customers and answer questions for
them. For example, you can create an agent that helps customers process insurance
claims or an agent that helps customers make travel reservations. You don't have to
provision capacity, manage infrastructure, or write custom code. Amazon Bedrock
manages prompt engineering, memory, monitoring, encryption, user permissions,
and API invocation.

Agents for Amazon Bedrock enable the construction and configuration of autonomous agents
within applications to assist end-users in completing actions leveraging organization data and
user input. These agents orchestrate interactions among foundation models, data sources,
software applications, and user dialogues, automating tasks such as processing insurance
claims or making travel reservations without requiring manual capacity provisioning,
infrastructure management, or custom code development. Amazon Bedrock handles aspects
like prompt engineering, memory management, monitoring, encryption, user permissions,
and API calls.
Key functionalities of agents include extending foundation models to parse user requests into
actionable tasks, engaging in natural conversations to gather additional user information,
executing API calls to fulfill requests, and enhancing performance through data source

 24

queries. To deploy an agent, developers may optionally create a knowledge base, configure
the agent for specific use cases, associate it with a knowledge base for improved
performance, customize behavior through prompt templates, test the agent using the Amazon
Bedrock console or API, and deploy it within their application by creating aliases for agent
versions. This process significantly reduces development time for generative AI applications
by automating a wide range of tasks.

BERT
BERT (Bidirectional Encoder Representations from Transformers) is a groundbreaking
model in the field of natural language processing (NLP) developed by Google. It represents a
significant departure from previous models due to its deep bidirectionality, allowing the
model to understand the context of a word based on all of its surroundings (left and right of
the word). BERT is pre-trained on a large corpus of text and then can be fine-tuned with
additional output layers to perform a wide range of language tasks, such as question
answering, language inference, and sentiment analysis.

The application of pre-trained language representations like BERT to downstream tasks can
be approached via two main strategies: feature-based and fine-tuning.

1. Feature-based Approach: In this approach, the pre-trained representations are used as
additional features for the downstream task. A common example of this strategy is the use of
pre-trained word embeddings (such as GloVe or Word2Vec) where the embeddings are fixed
and only the weights of the subsequent layers are trained to perform a specific task. For
BERT, this would involve extracting the contextual embeddings from one of the BERT layers
and then using these embeddings as input features to a separate model designed for the
downstream task. The main advantage of this approach is its flexibility, as it allows for the
use of pre-trained representations in a wide variety of models and tasks. However, it might
not leverage the full potential of the pre-trained model since only the extracted features are
used and not the model's architecture or training capabilities.

2. Fine-tuning Approach: Fine-tuning involves starting with a pre-trained model and
continuing the training process on the downstream task with a much smaller dataset. For
BERT, this means adding a small number of task-specific output layers on top of the pre-
trained BERT model, and then training all the parameters end-to-end on the downstream task.
This approach leverages the pre-trained weights as a starting point, which can significantly
reduce the amount of data required to achieve high performance on a specific task. Fine-
tuning can adjust both the deep pre-trained parameters and the newly added task-specific
parameters, allowing the model to adapt more thoroughly to the task at hand. The fine-tuning
process is generally faster and requires less data than training a model from scratch, making it
a powerful strategy for applying BERT to a wide range of NLP tasks.

Both strategies have their own sets of advantages and considerations, and the choice between
them depends on the specific requirements of the task, the available computational resources,
and the size of the task-specific dataset. Fine-tuning has become the more popular approach
for leveraging models like BERT, as it often leads to superior performance across a variety of
tasks with minimal task-specific adjustments.

 25

A downstream task in the context of machine learning, and specifically in natural language
processing (NLP), refers to a specific application or problem that benefits from the use of a
pre-trained model. Downstream tasks are essentially the target tasks for which the pre-trained
models, such as BERT, are fine-tuned or adapted to perform specific functions or to make
predictions based on the learned representations. These tasks are called "downstream"
because they lie downstream in the workflow, utilizing the upstream pre-training phase's
learned knowledge and capabilities.

Downstream tasks often involve specific datasets and objectives that require understanding,
generating, or analyzing text. Examples of downstream tasks in NLP include:

1. Sentiment Analysis: Determining whether a piece of text expresses positive, negative, or
neutral sentiment.
2. Question Answering: Providing answers to questions based on the content of a given text.
3. Named Entity Recognition (NER): Identifying and classifying key elements in text into
predefined categories, such as the names of people, organizations, locations, expressions of
times, quantities, monetary values, percentages, etc.
4. Text Summarization: Generating a concise and fluent summary while retaining the key
information and overall meaning.
5. Language Inference: Determining the relationship between sentences, such as whether one
sentence entails another, contradicts it, or neither.
6. Machine Translation: Translating text from one language to another.

The pre-training phase involves learning general language representations from large
corpora of text, which captures a wide range of language understanding capabilities.
The downstream phase, on the other hand, focuses on leveraging these capabilities to
perform well on specific tasks by fine-tuning the pre-trained model with task-specific
data. This allows the model to adjust its pre-learned representations to better suit the nuances
and requirements of the particular task at hand.

FlashAttention-2: Faster Attention with Better Parallelism and Work
Partitioning

Flash Attention 2
You can speedup the training throughput by using Flash Attention 2 integration in
transformers. Check out the appropriate section in the single GPU section to learn
more about how to load a model with Flash Attention 2 modules.

FlashAttention-2 is an advancement in the domain of Transformers, particularly addressing
the challenge of scaling Transformers to manage longer sequence lengths. This challenge is
pivotal for improving performance in various applications, such as language modeling, high-
resolution image understanding, and generation tasks in code, audio, and video. The core
issue with scaling lies in the attention layer, where runtime and memory requirements
increase quadratically with sequence length, presenting a significant bottleneck.

 26

The original FlashAttention introduced a method that leverages the asymmetric GPU memory
hierarchy to achieve significant memory savings—moving from a quadratic to a linear
memory requirement—and a runtime speedup of 2-4x compared to optimized baselines,
without resorting to approximation. Despite these improvements, FlashAttention's efficiency
was limited, achieving only 25-40% of the theoretical maximum floating-point operations per
second (FLOPs/s), primarily due to suboptimal work partitioning among the GPU's thread
blocks and warps. This suboptimal partitioning led to either low occupancy or unnecessary
memory operations, hindering performance.

FlashAttention-2 proposes an enhanced approach with improved work partitioning
mechanisms to address these inefficiencies. Specifically, it introduces three key
improvements:
1. Algorithmic Tweaks: Adjustments are made to the algorithm to reduce the number of non-
matrix multiplication (non-matmul) floating-point operations (FLOPs), streamlining the
process.
2. Parallelization of Attention Computation: Even for a single attention head, the computation
is parallelized across different thread blocks on the GPU. This strategy increases the
occupancy, utilizing the GPU's resources more efficiently.
3. Work Distribution Within Thread Blocks: Within each thread block, the workload is
distributed among warps to minimize communication through shared memory, thus reducing
the overhead associated with such operations.

These enhancements enable FlashAttention-2 to achieve approximately a 2x speedup over the
original FlashAttention, reaching 50-73% of the theoretical maximum FLOPs/s on NVIDIA
A100 GPUs. This performance is nearing the efficiency of optimized matrix-multiply
(GEMM) operations, which are a cornerstone of high-performance computing in deep
learning.

Empirical validation demonstrates that when FlashAttention-2 is integrated into the training
process of GPT-style models, it can achieve training speeds of up to 225 teraFLOPs/s per
A100 GPU, translating to a model FLOPs utilization rate of 72%. This significant
improvement not only enhances the training efficiency of large-scale models but also opens
up new possibilities for handling longer sequences in various applications, making it a critical
advancement in the field of deep learning and Transformers.

Training LLMs on single GPUs

- Practical techniques to enhance model training efficiency on a single GPU focus on
optimizing memory utilization and training speed.
- These techniques remain valid for multi-GPU setups, which can benefit from additional
parallelism methods.

Key considerations for training large models:
- Balancing data throughput/training time with model performance.
- Maximizing throughput (samples/second) by utilizing GPU to its limit.
- Using memory optimization techniques like gradient accumulation if the desired batch size
exceeds GPU memory limits.

 27

- Determining the optimal batch size through hyperparameter tuning to maximize resource
efficiency.

Methods and tools for training optimization:
- Batch Size Choice: Improves training speed and optimizes memory.
- Gradient Accumulation: Optimizes memory by allowing larger effective batch sizes without
increasing GPU memory usage.
- Gradient Checkpointing: Optimizes memory by saving only a subset of activations during
training.
- Mixed Precision Training: Speeds up training; may save memory depending on model size
and batch size.
- Optimizer Choice: Affects both training speed and memory utilization.
- Data Preloading: Enhances training speed by ensuring efficient data feeding to the GPU.
- DeepSpeed Zero: Optimizes memory usage, particularly beneficial for large models.
- torch.compile: Boosts training speed without memory optimization.
- Parameter-Efficient Fine Tuning (PEFT): Reduces memory footprint by adding trainable
parameters on top of a frozen model.

Additional optimization strategies:
- Custom Docker containers with efficient software prebuilds.
- Models utilizing Mixture of Experts (MoE) for parameter efficiency.
- Conversion to BetterTransformer for leveraging PyTorch native attention mechanisms.
- Consideration of multi-GPU setups if single-GPU optimizations are insufficient.

Notable points:
- Gradient accumulation increases effective batch size without additional GPU memory but
may slow down training.
- Mixed precision training leverages lower-precision formats for speed, with potential
memory savings.
- Optimizer choice, such as AdamW variants or Adafactor, impacts both speed and memory
usage.
- Techniques like data preloading, DeepSpeed Zero, and torch.compile offer various
efficiency improvements.

These techniques are applicable across different training frameworks, including Trainer and
PyTorch loops, and can be configured with tools like 🤗 Accelerate for flexible optimization.
https://huggingface.co/docs/transformers/perf_train_gpu_one

 28

Efficient Training on Multiple GPUs
- Transition to multi-GPU setups when single GPU limitations are reached, applying single-
GPU optimization strategies beforehand.
- Parallelism forms used in multi-GPU training include data parallelism, tensor parallelism,
and pipeline parallelism, tailored to specific hardware configurations.

Scalability Strategy:
- Estimate vRAM requirements using tools like the 🤗 Model Memory Calculator for models
on the 🤗 Hub.

Parallelization Strategies:

For Single Node / Multi-GPU Setup:
- Model fits on a single GPU: Use Distributed DataParallel (DDP) or experiment with ZeRO
for potentially faster results.
- Model too large for a single GPU: Consider Pipeline Parallel (PP), ZeRO, or Tensor Parallel
(TP) strategies, depending on connectivity (e.g., NVLINK).
- Largest layer doesn't fit on a single GPU: Mandatory use of Tensor Parallel (TP) or ZeRO
with additional single-GPU optimizations.

For Multi-Node / Multi-GPU Setup:
- Fast inter-node connectivity: Opt for ZeRO or a combination of PP, TP, and Data Parallel
(DP) for fewer communications.
- Slow inter-node connectivity: Combine DP with PP, TP, and ZeRO for efficiency.

Data Parallelism (DP) vs. DistributedDataParallel (DDP):
- DDP is preferred over DP for its efficiency in multi-GPU setups due to reduced
communication overhead and balanced workload.

ZeRO Data Parallelism:
- Splits model parameters across GPUs to reduce memory footprint, allowing each GPU to
hold only a fraction of the model.

Pipeline Parallelism (PP):
- Splits model into stages across GPUs, processing different batches simultaneously to reduce
idle times and increase efficiency.

Tensor Parallelism (TP):
- Divides model tensors across GPUs for parallel processing, requiring fast GPU
interconnects for efficiency.

Combining Parallelism Strategies:
- Strategies like DP, PP, and TP can be combined in various configurations (e.g., 2D or 3D
parallelism) for optimized performance based on specific hardware and model requirements.

FlexFlow:
- Offers a dynamic approach to parallelism, optimizing across multiple dimensions (Sample,
Operator, Attribute, Parameter) for static workloads.

 29

GPU Selection:
- Control over the number of GPUs and their selection order can be managed through
environment variables like CUDA_VISIBLE_DEVICES, optimizing resource usage
according to the specific hardware setup and model requirements.

This comprehensive approach to multi-GPU training encompasses a variety of parallelism
strategies and tools, allowing for tailored optimizations that leverage the full potential of
available hardware resources for efficient and scalable model training.
https://huggingface.co/docs/transformers/perf_train_gpu_many

The open-source advantage
“Smaug-72B from Abacus AI is available now on Hugging Face, is on top of the LLM leaderboard, and is
the first model with an average score of 80!! In other words, it is the world’s best open-source foundation
model,” said Abacus AI CEO Bindu Reddy in a post on X.com.
“Our next goal will be to publish these techniques as a research paper and apply them to some of the best
Mistral Models, including miqu (a 70B fine-tine of LLama-2),” she added. “The techniques we used
specifically target reasoning and math skills, which explains the high GSM8K scores! Our upcoming paper
will explain more.”

 30

Transformers
https://en.wikipedia.org/wiki/Transformer_(deep_learning_architecture)

RNN: https://machinelearningmastery.com/an-introduction-to-recurrent-neural-networks-
and-the-math-that-powers-them/

Rectified linear units find applications in computer vision[8] and speech recognition[11][12] using deep
neural nets and computational neuroscience.[13][14][15]

Training a Recurrent Neural Network
The backpropagation algorithm of an artificial neural network is modified to include the
unfolding in time to train the weights of the network. This algorithm is based on
computing the gradient vector and is called backpropagation in time or BPTT algorithm
for short.

RNN Architectures
There are different variations of RNNs that are being applied practically in machine
learning problems:

 31

Bidirectional Recurrent Neural Networks (BRNN)

In BRNN, inputs from future time steps are used to improve the accuracy of the
network. It is like knowing the first and last words of a sentence to predict the middle
words.

Gated Recurrent Units (GRU)

These networks are designed to handle the vanishing gradient problem. They have a
reset and update gate. These gates determine which information is to be retained for
future predictions.

Long Short Term Memory (LSTM) with 3 gates INPUT, OUTPUT, FORGET GATE
LSTMs were also designed to address the vanishing gradient problem in RNNs. LSTMs use
three gates called input, output, and forget gate. Similar to GRU, these gates determine which
information to retain.
It is a recurrent neural network trained using Backpropagation Through Time that overcomes
the vanishing gradient problem. As such, it can be used to create large recurrent networks
that, in turn, can be used to address difficult sequence problems in machine learning and
achieve state-of-the-art results.
Instead of neurons, LSTM networks have memory blocks connected through
layers.

A block has components that make it smarter than a classical neuron and a memory for
recent sequences. A block contains gates that manage the block’s state and output. A
block operates upon an input sequence, and each gate within a block uses the
sigmoid activation units to control whether it is triggered or not, making the change of
state and addition of information flowing through the block conditional.

There are three types of gates within a unit:

• Forget Gate: conditionally decides what information to throw away from the
block

• Input Gate: conditionally decides which values from the input to update the
memory state

• Output Gate: conditionally decides what to output based on input and the
memory of the block

Each unit is like a mini-state machine where the gates of the units have weights that are
learned during the training procedure.

LSTMs are sensitive to the scale of the input data, specifically when the sigmoid
(default) or tanh activation functions are used. It can be a good practice to rescale the
data to the range of 0-to-1, also called normalizing. You can easily normalize the
dataset using the MinMaxScaler preprocessing class from the scikit-learn library.

 32

1	
2	
3	

#	normalize	the	dataset	
scaler	=	MinMaxScaler(feature_range=(0,	1))	
dataset	=	scaler.fit_transform(dataset)	

#	create	and	fit	the	LSTM	network
model	=	Sequential()
model.add(LSTM(4,	input_shape=(1,	look_back)))
model.add(Dense(1))
model.compile(loss='mean_squared_error',	optimizer='adam')
model.fit(trainX,	trainY,	epochs=100,	batch_size=1,	verbose=2)

LSTM for Regression Using the Window Method
You can also phrase the problem so that multiple, recent time steps can be used to
make the prediction for the next time step.

This is called a window, and the size of the window is a parameter that can be tuned for
each problem.

SageMaker JumpStart
PDFRSS
SageMaker JumpStart provides pretrained, open-source models for a wide range of
problem types to help you get started with machine learning. You can incrementally
train and tune these models before deployment. JumpStart also provides solution
templates that set up infrastructure for common use cases, and executable example
notebooks for machine learning with SageMaker.

You can deploy, fine-tune, and evaluate pretrained models from popular models
hubs through the JumpStart landing page in the updated Studio experience.

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-jumpstart.html

 In most cases, you will start your generative AI projects with an existing foundation
model from a model hub such as Hugging Face Model Hub, PyTorch Hub, or Amazon
SageMaker JumpStart. A model hub is a collection of models that typically contains
detailed model descriptions including the use cases that they address.

 Throughout this book, we will use Hugging Face Model Hub and SageMaker
JumpStart to access foundation models like Llama 2 from Meta (Facebook) and ∫from
the Technology Innovation Institute (TII) and FLAN-T5 from Google.

 33

 Generative AI models are capable of carrying out many different tasks with great
success. However, you will need to decide if an existing foundation model is suitable for your
application needs. In Chapter 2, you will learn how to work with these existing foundation
models right out of the box using techniques called prompt engineering and in-context
learning.
We recommend that you try different models for your generative use case and task. Start with
an existing, well-documented, relatively small (e.g., 7 billion-parameter) foundation model to
iterate quickly and learn the unique ways of interacting with these generative AI models with
a relatively small amount of hardware (compared to the larger 175+ billion-parameter
models).

 ready to scale your efforts to a larger distributed cluster, you would then migrate to
SageMaker distributed training jobs to scale to a larger compute cluster using accelerators
like the NVIDIA GPU or AWS Trainium

While you may be able to avoid accelerators initially, you will very likely need to use them
for longer-term development and deployment of more complex models. The sooner you learn
the unique—and sometimes obscure—aspects of developing with accelerators like NVIDIA
GPUs or AWS Trainium chips, the better. Fortunately, a lot of the complexity has been
abstracted by the hardware provider through the NVIDIA CUDA library and AWS Neuron
SDK, respectively.

Amazon Bedrock is a fully managed service that provides access to models from
Amazon (e.g., Titan) and popular third-party providers (e.g., AI21 Labs, Anthropic,
Cohere, and Stability AI). This allows you to quickly get started experimenting with
available foundation models. Bedrock also allows you to privately customize foundation

 34

models with your own data as well as integrate and deploy those models into
generative AI”

“Adapting a model to a specific use case, task, or domain often includes augmenting
the model with additional data. AWS also provides multiple implementation options for
vector stores that store vector embeddings. Vector stores and embeddings are used for
retrieval-augmented generation (RAG) to efficiently retrieve relevant information from
external data sources to augment the data used with a generative model. The options
available include vector engine for Amazon OpenSearch Serverless as well as the k-NN
plugin available for use with Amazon OpenSearch Service. In addition, both Amazon
Aurora PostgreSQL and Amazon Relational Database Services (RDS) for PostgreSQL
include vector stores capabilities through built-in pgvector support.

If you are looking for a fully managed semantic search experience on domain-specific
data, you can use Amazon Kendra, which creates and manages the embeddings for
you.

A generative AI application includes more than generative models.

 35

You will also learn how to use in-context-learning to pass multiple prompt-completion
pairs (e.g., question-answer pairs) in the “context” along with your prompt input. This
in-context learning nudges the model to respond similarly to the prompt-completion
pairs in the context. This is one of the more remarkable capabilities of generative
models as it temporarily alters the model’s behavior for the duration of just that single
request.

Lastly, you will learn some of the most commonly configured generative parameters like
temperature and top k that control the generative model’s creativity when creating
content.”

“It’s important to note that while text-based prompts and completions are implemented
and interpreted by humans as natural language sentences, generative models convert
them into sequences of tokens, or word fragments. By combining many of these tokens
in different elements. By combining many of these tokens in different ways, the model
is capable of representing an exponential number of words using a relatively small
number of tokens—often on the order of 30,000–100,000 tokens in the model’s
vocabulary.

 36

“ 1.3 tokens per word,”

“In-Context Learning with Few-Shot Inference

 A powerful technique to help your generative model produce better completions
for your prompt is to include a few prompt-completion pairs inside the context portion
of your prompt. This is called in-context learning with few-shot inference.”

 37

“Greedy versus random sampling”

For each inference request, you can configure the model to choose the next token
using either greedy or random sampling. For greedy sampling, the token with the
highest probability is selected. With random sampling, the model selects the next token
using a random-weighted strategy across all predicted token probabilities. The different
sampling methods are shown in Figure 2-2 for the phrase “the student learns from the
professor and her lectures.”

top-p and top-k random sampling

These are the most common inference parameters when using random sampling.
These parameters provide more fine-grained control for the random sample, which, if
used properly, should improve the model’s response while allowing it to be creative
enough to fulfill the generative task. top-k, as you may have guessed, limits the model
to choosing a token randomly from only the top-k tokens with the highest probability.
For example, if k is set to 3, you are restricting the model to choose from only the top
three tokens using the weighted random-sampling strategy. Note that setting top-k to
a higher number can help reduce repetitiveness, while setting top-k to 1 basically
gives you greedy decoding.

“top-p limits the model to randomly sampling from the set of tokens whose cumulative
probabilities do not exceed p, starting from the highest probability and working down to
the lowest probability. “top-p can also produce greater variability and is sometimes
used if it is hard to pick a good top-k value. top-p and top-k can also be used
together.”

temperature

This parameter also helps to control the randomness of the model output by modifying
the shape of the next-token probability distribution. “In contrast to top-k and top-p,
changing the temperature actually changes the next-token probability distribution,
which ultimately affects the next-token prediction. “A low temperature (below 1, for
example) results in stronger peaks where the probabilities are concentrated among a
smaller subset of tokens. A higher temperature (above 1, for example) results in a flatter

 38

next-token probability distribution where the probabilities are more evenly spread
across the tokens. Setting the temperature to 1 leaves the next-token probability
distribution unaltered, which represents the distribution learned during model training
and tuning.”

LLM models have built a solid understanding of human language as well as a massive
amount of knowledge across many domains. This is often called parametric memory,
as the knowledge is captured in the models’ parameters.

Embedding Vectors

 Embedding vectors, often called the “embeddings,” have been used in machine
learning, information retrieval, and search use cases for decades. Embeddings are a
numerical, vectorized representation of any entity of any type, including text, images,
videos, and audio clips, projected into very high-dimensional vector spaces.

 39

“Since these vectors encode the meaning and context of tokens within a larger corpus
of text, they allow the model to statistically represent and understand human language.
The closer these tokens are to each other in the vector space, the more similar they are
in semantic meaning.”

 40

“Transformer is primarily focused on helping the model generate a completion to a
given input prompt. During model pretraining and fine-tuning the Transformer is helping
the model gain contextual understanding of the language from the input training/tuning
corpus.”

Il meccanismo di "autoattenzione" associa ogni token dei dati a tutti gli altri
token della sequenza di input

 41

This pairwise attention lets the model learn the contextual dependencies, or contextual
understanding, of the input data during model pretraining. By paying attention to the
whole input, the Transformer unlocks the model’s ability to learn and represent
language from the training documents provided. “In practice, the Transformer actually
learns multiple sets of self-attention weights through multiheaded attention. Each head
runs in parallel over the same input and learns different aspects of the language.

Transformers, introduced in the seminal paper "Attention is All You Need" by Vaswani
et al., have become the foundation of modern natural language processing (NLP). They
are designed to handle sequential data, like text, in a parallel manner, which
significantly improves efficiency over traditional models that process data sequentially
(e.g., RNNs and LSTMs). Transformers rely heavily on the self-attention mechanism to
weigh the importance of different words within the input data. There are three main
types of Transformer architectures: Autoencoders, Autoregressive models, and
Encoder-Decoder models.

There are three variants of generative transformer-based models overall:
encoder-only, decoder-only, and encoder-decoder. Each variant is trained with a
different training objective and, during pretraining, the model weights are updated to
minimize the loss of the training objectives described next for each variation. Each
variant is capable of addressing different types of generative tasks, as you will see next.

Autoencoders

Autoencoder Transformers are designed to encode input data into a compact
representation and then decode this representation back into the original form or
some target form. The encoding process captures the essential information needed to

 42

reconstruct the input. In the context of NLP, autoencoder Transformers like BERT
(Bidirectional Encoder Representations from Transformers) learn to predict missing
words in a sentence or next sentences, enabling them to understand context and
meaning from the input text. They are typically used for tasks like sentence
classification, named entity recognition, and question answering, where understanding
the input text is crucial.

Autoregressive Models

Autoregressive Transformers generate sequences one token at a time, where the
prediction of each new token is dependent on the tokens that have been generated so
far. This type of model is inherently sequential in its generation process. GPT
(Generative Pretrained Transformer) is a prime example of an autoregressive
Transformer. It's trained to predict the next word in a sentence and can generate
coherent and contextually relevant text over long passages. Autoregressive models are
particularly well-suited for tasks like text generation, language modeling, and machine
translation.

Encoder-Decoder Models

Encoder-Decoder Transformers combine both encoding and decoding functionalities
but are structured to handle input and output sequences that may have different
lengths and are not directly aligned. The encoder processes the input sequence to
create a context-rich representation, which the decoder uses to generate the output
sequence. This architecture is exemplified is ideal for tasks that involve transforming
input data into some output form, such as machine translation or summarization. The
encoder captures the meaning of the input text, and the decoder uses this
understanding to produce the target text.

 Encoder-only models, or autoencoders, are pretrained using a technique called
masked language modeling (MLM), which randomly mask input tokens and try to
“predict the masked tokens. This is sometimes called a denoising objective.
Autoencoding models use bidirectional representations of the input to better
understand the full context of a token—not just the previous tokens in the sequence

 43

Encoder-only models are best suited for language tasks that utilize the
embeddings generated by the encoder, such as text classification. They are not
particularly useful for generative tasks that continue to generate more text. A well-
known encoder-only model is BERT. The embedding outputs are also useful for
semantic similarity search—an advanced document-search algorithm beyond simple
keyword search. You will explore semantic similarity search more in “Retrieval-
Augmented Generation”.”

Decoder-only models, or autoregressive models, are pretrained using unidirectional
causal language modeling (CLM), which predicts the next token using only the previous
tokens—every other token is masked

These models are the standard for generative tasks, including question-answer. The
families of GPT-3, Falcon, and LLaMA models are well-known autoregressive models.

Decoder-only, autoregressive models use millions of text examples to learn a
statistical language representation by continuously predicting the next token from the

 44

previous tokens. These models are the standard for generative tasks, including
question-answer. The families of GPT-3, Falcon, and LLaMA models

Encoder-decoder models, often called sequence-to-sequence models, use both
the Transformer encoder and decoder. While the pretraining objectives vary from model
to model, the popular T5 foundation model (e.g., FLAN-T5) was pretrained using
consecutive multitoken masking called span corruption. The decoder then attempts to
reconstruct the masked sequence of tokens, <X>, as shown”

Using OpenSearch as a vector database brings together the power of traditional
search, analytics, and vector search in one complete package. OpenSearch’s vector
database capabilities can accelerate artificial intelligence (AI) application development
by reducing the effort for builders to operationalize, manage, and integrate AI-
generated assets. Bring your models, vectors, and metadata into OpenSearch to power
vector, lexical, and hybrid search and analytics, with performance and scalability built
in. What is a vector database?

Information comes in many forms: unstructured data, like text documents, rich media,
and audio, and structured data, like geospatial coordinates, tables, and graphs.
Innovations in AI have enabled the use of models, or embeddings, to encode all types
of data into vectors. These vectors are data points in a high-dimensional space that
capture the meaning and context of an asset, allowing search tools to find similar
assets by searching for neighboring data points.

 45

Vector databases allow you to store and index vectors and metadata, unlocking the
ability to use low-latency queries to discover assets by degree of similarity. Typically
powered by k-NN indexes built using algorithms like Hierarchical Navigable Small
Worlds (HNSW) and Inverted File (IVF) System, vector databases augment k-NN
functionality by providing a foundation for applications like data management, fault
tolerance, resource access controls, and a query engine.

OpenSearch provides an integrated  vector database that can support AI systems by
serving as a knowledge base. This benefits AI applications like generative AI and natural
language search by providing a long-term memory of AI-generated outputs. These
outputs can be used to enhance information retrieval and analytics, improve efficiency
and stability, and give generative AI models a broader and deeper pool of data from
which to draw more accurate and truthful responses to queries.

https://medium.com/@shankar.arunp/augmenting-large-language-models-with-verified-
information-sources-leveraging-aws-sagemaker-and-f6be17fb10a8

 46

Scaling laws

a set of scaling laws have emerged that describe the trade-offs between model size
and dataset size for a fixed compute budget (e.g., number of GPU hours). These scaling
laws state that you can achieve better generative model performance by either
increasing the number of tokens or the number of model parameters.

 ” “Researchers have found that by increasing the training dataset size instead of
the model size, you can get state-of-the-art performance that exceeds the 175 billion-
parameter models with a much smaller set of weights. In fact, the “Scaling Laws for
Neural Language Models” paper shows that if you hold the compute budget constant,
model performance may increase when you either increase the training dataset size
(and hold model parameter size constant) or increase the number of model parameters
(and hold the”

“This also hints that you can improve performance for smaller models by just training
them on more data.”

“The Chinchilla paper implies that the massive 100 billion-plus parameter models like
GPT-3 may be overparameterized and undertrained. Additionally, they hypothesize that
you could achieve 100 billion-plus parameter model performance with a small model by
simply providing more training data to the smaller model.

 To be more specific, the authors of the Chinchilla paper claim that the optimal
training dataset size (measured in tokens) is 20x the number of model parameters and
that anything below that 20x ratio is potentially overparameterized and undertrained.
“The Chinchilla paper implies that the massive 100 billion-plus parameter models like
GPT-3 may be overparameterized and undertrained. Additionally, they hypothesize that
you could achieve 100 billion-plus parameter model performance with a small model by
simply providing more training data to the smaller model.

 To be more specific, the authors of the Chinchilla paper claim that the optimal
training dataset size (measured in tokens) is 20x the number of model parameters and
that anything below that 20x ratio is potentially overparameterized and undertrained.

“AWS has also developed purpose-built ML accelerators, AWS Trainium, for high-
performance and cost-efficient training of 100B+ parameter generative AI models.

“The largest Trn1 instance, at the time of this writing, is powered by 16 AWS Trainium
chips and has 512 GB of shared accelerator memory.

 47

When you try to train a multibillion-parameter model at 32-bit full precision, you will
quickly hit the limit of a single NVIDIA A100 or H100 GPU with only 80 GB of GPU RAM.
Therefore, you will almost always need to use quantization when using a single GPU.
“Quantization reduces the memory needed to load and train a model by reducing the
precision of the model weights. Quantization converts your model parameters from 32-
bit precision down to 16-bit precision—or even 8-bit or 4-bit.

“bfloat16 has become a popular alternative to fp16 as it captures the full range of fp32
with only 16-bits. This reduces numerical instabilities during model training caused by
overflow.

Optimizing the Self-Attention Layers: FlashAttention
and Grouped-Query Attention
FlashAttention

 The Transformer’s attention layer is a bottleneck when trying to scale to longer input
sequences because the computation and memory requirements scale quadratically
O(n2) with the number of input tokens. FlashAttention, initially proposed in a research
paper,2 is a GPU-specific solution to this quadratic scaling problem.

Overall, FlashAttention increases self-attention performance by 2–4x and reduces
memory usage 10–20x by reducing the quadratic O(n2) computational and memory
requirements down to linear O(n), where n is the number of input tokens in the
sequence. With FlashAttention, the Transformer scales to handle much longer input
sequences which allows for better performance on larger input context windows

Grouped-Query Attention GQA
“GQA allows queries to be grouped into fewer key and value heads and therefore reduces
memory consumption of the attention heads. In addition, GQA improves performance by
reducing the number of memory reads and writes.”

 48

Parallel distribution Distributed Data Parallel – Fully
Sharded Data Parallel
While these techniques are essential to pretraining large foundation models from scratch,
they are also useful for adapting foundation models to your custom datasets and use
cases during a process called fine-tuning.

For larger models, you will likely need to use a distributed cluster of GPUs to train these
massive models across hundreds or thousands of GPUs.

• Various Distributed Computing Patterns: Includes Distributed Data Parallel (DDP)
and Fully Sharded Data Parallel (FSDP).

• Key Difference: Lies in the method of splitting—or sharding—the model across
GPUs.

• DDP Use Case: Chosen when model parameters can fit into a single GPU, loading a
single copy of the model into each GPU.

• FSDP Necessity: Required if the model is too large for a single GPU, even after
quantization, necessitating the sharding of the model across multiple GPUs.

• Data Handling: In both DDP and FSDP, data is divided into batches and distributed
across all available GPUs to enhance GPU utilization and cost efficiency.

• Trade-off: Increased GPU utilization and cost efficiency come at the cost of some
communication overhead.

“PyTorch comes with an optimized implementation of DDP that automatically copies your
model onto each GPU (assuming it fits into a single GPU using a technique such as
quantization), splits the data into batches, and sends the batches to each GPU in parallel. In
traditional data parallel training, a complete copy of the model is maintained on
every GPU, and only the input data is divided among them. Each GPU computes
gradients independently based on its subset of the data, and these gradients are
then aggregated across all GPUs to update the model. While this approach is
straightforward, it significantly limits the size of models that can be trained, as each
GPU must have enough memory to store the entire model and the associated data
for gradient computation. FSDP addresses this limitation by dividing (sharding)

 49

the model's parameters across the GPUs. Each GPU stores only a portion of the
model's parameters, and during the forward and backward passes of training, FSDP
dynamically loads the necessary parameters into GPU memory as needed.

“FSDP is a common distributed computing strategy supported by Amazon SageMaker. T”

Fine-tuning
Instruction dataset: you can achieve very good results with instruction fine-tuning using a
relatively small instruction dataset—often just 500–1,000 examples is enough.”

RAG Langchain orchestration architecture

 50

 51

 52

 53

 54

 55

GenAIOps, FMOps, or LLMOps: Operationalizing the
Generative AI Project Life Cycle

 56

BART vs BERT
Feature BART BERT

Bidirectional and Auto-
Regressive Transformers

Bidirectional Encoder Representations
from Transformers

Architecture Encoder-Decoder Encoder-Only

Primary Use
Text generation, such as
summarization and translation

Text understanding, such as
classification and entity recognition

Pretraining
Task Noising and reconstructing text

Masked language model and next
sentence prediction

Encoding
Bidirectional encoding of
corrupted text Bidirectional encoding of unaltered text

Decoding
Autoregressive decoding to
reconstruct or generate text

Not applicable, as BERT does not
generate text

Model Output
Capable of generating new text
based on input

Generates representations of input text
for classification or other tasks

Use Cases
Content creation, translation,
summarization

Sentiment analysis, question
answering, named entity recognition

Training
Approach

Denoising autoencoder: learns by
correcting intentionally corrupted
text

Learns by predicting randomly masked
words in sentences and predicting next
sentences

Interactivity
Generates output text
interactively, one token at a time

Analyzes input text as a whole to
provide embeddings or perform
specific tasks

This comparison highlights the fundamental differences in architecture and application
between BART and BERT. While BART is designed for tasks that involve both
understanding and generating text, BERT focuses on understanding and interpreting text,
making it ideal for tasks that require insights into language structure and content without the
need for generating new text.

